一种基于协同学习的无人机辅助无线传感器网络任务分流算法

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computer Journal Pub Date : 2021-06-01 DOI:10.1093/comjnl/bxab100
Rama Al-Share;Mohammad Shurman;Abdallah Alma'aitah
{"title":"一种基于协同学习的无人机辅助无线传感器网络任务分流算法","authors":"Rama Al-Share;Mohammad Shurman;Abdallah Alma'aitah","doi":"10.1093/comjnl/bxab100","DOIUrl":null,"url":null,"abstract":"Recently, unmanned aerial vehicles (UAVs) have emerged to enhance data processing, network monitoring, disaster management and other useful applications in many different networks. Due to their flexibility, cost efficiency and powerful capabilities, combining these UAVs with the existing wireless sensor networks (WSNs) could improve network performance and enhance the network lifetime in such networks. In this research, we propose a task offloading mechanism in UAV-aided WSN by implementing a utility-based learning collaborative algorithm that will enhance the service satisfaction rate, taking into account the delay requirements of the submitted tasks. The proposed learning algorithm predicts the queuing delays of all UAVs instead of having a global overview of the system, which reduces the communication overhead in the network. The simulation results showed the effectiveness of our proposed work in terms of service satisfaction ratio compared with the non-collaborative algorithm that only processes the task locally in the WSN cluster.","PeriodicalId":50641,"journal":{"name":"Computer Journal","volume":"64 10","pages":"1575-1583"},"PeriodicalIF":1.5000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Collaborative Learning-Based Algorithm for Task Offloading in UAV-Aided Wireless Sensor Networks\",\"authors\":\"Rama Al-Share;Mohammad Shurman;Abdallah Alma'aitah\",\"doi\":\"10.1093/comjnl/bxab100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, unmanned aerial vehicles (UAVs) have emerged to enhance data processing, network monitoring, disaster management and other useful applications in many different networks. Due to their flexibility, cost efficiency and powerful capabilities, combining these UAVs with the existing wireless sensor networks (WSNs) could improve network performance and enhance the network lifetime in such networks. In this research, we propose a task offloading mechanism in UAV-aided WSN by implementing a utility-based learning collaborative algorithm that will enhance the service satisfaction rate, taking into account the delay requirements of the submitted tasks. The proposed learning algorithm predicts the queuing delays of all UAVs instead of having a global overview of the system, which reduces the communication overhead in the network. The simulation results showed the effectiveness of our proposed work in terms of service satisfaction ratio compared with the non-collaborative algorithm that only processes the task locally in the WSN cluster.\",\"PeriodicalId\":50641,\"journal\":{\"name\":\"Computer Journal\",\"volume\":\"64 10\",\"pages\":\"1575-1583\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9619514/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9619514/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 6

摘要

最近,无人驾驶飞行器(uav)已经出现,以增强数据处理,网络监测,灾害管理和许多不同网络中的其他有用应用。由于其灵活性、成本效率和强大的能力,将这些无人机与现有的无线传感器网络(wsn)相结合可以改善网络性能并增强此类网络中的网络寿命。在这项研究中,我们提出了一种任务卸载机制,通过实现基于效用的学习协同算法来提高服务满意度,同时考虑到提交任务的延迟要求。提出的学习算法可以预测所有无人机的排队延迟,而不是对系统进行全局概述,从而减少了网络中的通信开销。仿真结果表明,与仅在WSN集群中局部处理任务的非协作算法相比,本文提出的算法在服务满意度方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Collaborative Learning-Based Algorithm for Task Offloading in UAV-Aided Wireless Sensor Networks
Recently, unmanned aerial vehicles (UAVs) have emerged to enhance data processing, network monitoring, disaster management and other useful applications in many different networks. Due to their flexibility, cost efficiency and powerful capabilities, combining these UAVs with the existing wireless sensor networks (WSNs) could improve network performance and enhance the network lifetime in such networks. In this research, we propose a task offloading mechanism in UAV-aided WSN by implementing a utility-based learning collaborative algorithm that will enhance the service satisfaction rate, taking into account the delay requirements of the submitted tasks. The proposed learning algorithm predicts the queuing delays of all UAVs instead of having a global overview of the system, which reduces the communication overhead in the network. The simulation results showed the effectiveness of our proposed work in terms of service satisfaction ratio compared with the non-collaborative algorithm that only processes the task locally in the WSN cluster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Journal
Computer Journal 工程技术-计算机:软件工程
CiteScore
3.60
自引率
7.10%
发文量
164
审稿时长
4.8 months
期刊介绍: The Computer Journal is one of the longest-established journals serving all branches of the academic computer science community. It is currently published in four sections.
期刊最新文献
Correction to: Automatic Diagnosis of Diabetic Retinopathy from Retinal Abnormalities: Improved Jaya-Based Feature Selection and Recurrent Neural Network Eager Term Rewriting For The Fracterm Calculus Of Common Meadows An Intrusion Detection Method Based on Attention Mechanism to Improve CNN-BiLSTM Model Enhancing Auditory Brainstem Response Classification Based On Vision Transformer Leveraging Meta-Learning To Improve Unsupervised Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1