工作场所风险和灾害管理的深度分析

IF 1.3 4区 计算机科学 Q1 Computer Science IBM Journal of Research and Development Pub Date : 2019-10-14 DOI:10.1147/JRD.2019.2945693
S. Dalal;D. Bassu
{"title":"工作场所风险和灾害管理的深度分析","authors":"S. Dalal;D. Bassu","doi":"10.1147/JRD.2019.2945693","DOIUrl":null,"url":null,"abstract":"We discuss dynamic real-time analysis from multimodal data fusion for contextual risk identification to generate “risk maps” for the workplace, resulting in timely identification of hazards and associated risk mitigation. It includes new machine/deep learning, analytics, methods, and its applications that deal with the unconventional data collected from pictures, videos, documents, mobile apps, sensors/Internet of Things, Occupational Safety and Health Administration (OSHA) rules, and Building Information Model (BIM) Models. Specifically, we describe a number of advances and challenges in this field with applications of computer vision, natural language processing, and sensor data analysis. Applications include automated cause identification, damage prevention, and disaster recovery using current and historical claims data and other public data. The methods developed can be applied to any given situation with different groups of people, including first responders. Finally, we discuss some of the important nontechnical challenges related to business practicality, privacy, and industry regulations.","PeriodicalId":55034,"journal":{"name":"IBM Journal of Research and Development","volume":"64 1/2","pages":"14:1-14:9"},"PeriodicalIF":1.3000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1147/JRD.2019.2945693","citationCount":"1","resultStr":"{\"title\":\"Deep analytics for workplace risk and disaster management\",\"authors\":\"S. Dalal;D. Bassu\",\"doi\":\"10.1147/JRD.2019.2945693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss dynamic real-time analysis from multimodal data fusion for contextual risk identification to generate “risk maps” for the workplace, resulting in timely identification of hazards and associated risk mitigation. It includes new machine/deep learning, analytics, methods, and its applications that deal with the unconventional data collected from pictures, videos, documents, mobile apps, sensors/Internet of Things, Occupational Safety and Health Administration (OSHA) rules, and Building Information Model (BIM) Models. Specifically, we describe a number of advances and challenges in this field with applications of computer vision, natural language processing, and sensor data analysis. Applications include automated cause identification, damage prevention, and disaster recovery using current and historical claims data and other public data. The methods developed can be applied to any given situation with different groups of people, including first responders. Finally, we discuss some of the important nontechnical challenges related to business practicality, privacy, and industry regulations.\",\"PeriodicalId\":55034,\"journal\":{\"name\":\"IBM Journal of Research and Development\",\"volume\":\"64 1/2\",\"pages\":\"14:1-14:9\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1147/JRD.2019.2945693\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IBM Journal of Research and Development\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8867981/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBM Journal of Research and Development","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/8867981/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

我们讨论了多模态数据融合的动态实时分析,用于上下文风险识别,为工作场所生成“风险图”,从而及时识别危害并减轻相关风险。它包括新的机器/深度学习、分析、方法及其应用程序,这些应用程序处理从图片、视频、文档、移动应用程序、传感器/物联网、职业安全与健康管理局(OSHA)规则和建筑信息模型(BIM)模型收集的非常规数据。具体来说,我们通过计算机视觉、自然语言处理和传感器数据分析的应用,描述了该领域的一些进展和挑战。应用程序包括使用当前和历史索赔数据以及其他公共数据的自动原因识别、损害预防和灾难恢复。所开发的方法可以应用于任何特定情况下的不同人群,包括第一响应者。最后,我们将讨论与业务实用性、隐私和行业法规相关的一些重要的非技术挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep analytics for workplace risk and disaster management
We discuss dynamic real-time analysis from multimodal data fusion for contextual risk identification to generate “risk maps” for the workplace, resulting in timely identification of hazards and associated risk mitigation. It includes new machine/deep learning, analytics, methods, and its applications that deal with the unconventional data collected from pictures, videos, documents, mobile apps, sensors/Internet of Things, Occupational Safety and Health Administration (OSHA) rules, and Building Information Model (BIM) Models. Specifically, we describe a number of advances and challenges in this field with applications of computer vision, natural language processing, and sensor data analysis. Applications include automated cause identification, damage prevention, and disaster recovery using current and historical claims data and other public data. The methods developed can be applied to any given situation with different groups of people, including first responders. Finally, we discuss some of the important nontechnical challenges related to business practicality, privacy, and industry regulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IBM Journal of Research and Development
IBM Journal of Research and Development 工程技术-计算机:硬件
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The IBM Journal of Research and Development is a peer-reviewed technical journal, published bimonthly, which features the work of authors in the science, technology and engineering of information systems. Papers are written for the worldwide scientific research and development community and knowledgeable professionals. Submitted papers are welcome from the IBM technical community and from non-IBM authors on topics relevant to the scientific and technical content of the Journal.
期刊最新文献
Use of a smartwatch for home blood pressure measurement Numerical modeling of the behavior of a lithium battery after a collision Disaster Resilient Cities in Nepal: Disaster Management Efforts of Biratnagar Metropolitan City Status of Invasive Alien Plant species in Dhankuta Municipality Perceived Learning Environment: A Case of BBA Program at Dhankuta Multiple Campus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1