{"title":"黏性黏液上刚性基质上锆纳米颗粒的仿生改良-一种生理方法","authors":"S. I. Abdelsalam, A. Z. Zaher","doi":"10.1007/s10483-023-3030-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, an investigation is conducted to study the precise role of zirconium nanoparticles that exist in a slime-like fluid subject to specific adjustments. Since gliding is a technique of mobility used by bacteria that lack motility components, bacteria travel on their own strength in gliding locomotion by secreting a layer of slime on the substrate. A model of an undulating sheet over a layer of slime of a Rabinowitsch fluid is investigated as a potential model of bacteria’s gliding motility. With the aid of long wavelength approximation, the equations governing the circulation of slime underneath the cells are established and analytically solved. The effects of pseudoplasticity, dilatation and non-Newtonian parameter on the behavior of zirconium concentration, speed of microorganism (bacteria), streamline patterns, and pressure rise for non-Newtonian and Newtonian fluids are compared. The power required for propulsion is also investigated. Physical interpretation for the pertinent variables has been graphically discussed against the parameters under consideration. It is found that with the increase in the concentration of zirconium nanoparticles, the bacterial flow is accelerated and attains its maximum near the rigid substrate wall while an opposite behavior is noticed in the rest region.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 9","pages":"1563 - 1576"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biomimetic amelioration of zirconium nanoparticles on a rigid substrate over viscous slime — a physiological approach\",\"authors\":\"S. I. Abdelsalam, A. Z. Zaher\",\"doi\":\"10.1007/s10483-023-3030-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, an investigation is conducted to study the precise role of zirconium nanoparticles that exist in a slime-like fluid subject to specific adjustments. Since gliding is a technique of mobility used by bacteria that lack motility components, bacteria travel on their own strength in gliding locomotion by secreting a layer of slime on the substrate. A model of an undulating sheet over a layer of slime of a Rabinowitsch fluid is investigated as a potential model of bacteria’s gliding motility. With the aid of long wavelength approximation, the equations governing the circulation of slime underneath the cells are established and analytically solved. The effects of pseudoplasticity, dilatation and non-Newtonian parameter on the behavior of zirconium concentration, speed of microorganism (bacteria), streamline patterns, and pressure rise for non-Newtonian and Newtonian fluids are compared. The power required for propulsion is also investigated. Physical interpretation for the pertinent variables has been graphically discussed against the parameters under consideration. It is found that with the increase in the concentration of zirconium nanoparticles, the bacterial flow is accelerated and attains its maximum near the rigid substrate wall while an opposite behavior is noticed in the rest region.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 9\",\"pages\":\"1563 - 1576\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-3030-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3030-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Biomimetic amelioration of zirconium nanoparticles on a rigid substrate over viscous slime — a physiological approach
In this article, an investigation is conducted to study the precise role of zirconium nanoparticles that exist in a slime-like fluid subject to specific adjustments. Since gliding is a technique of mobility used by bacteria that lack motility components, bacteria travel on their own strength in gliding locomotion by secreting a layer of slime on the substrate. A model of an undulating sheet over a layer of slime of a Rabinowitsch fluid is investigated as a potential model of bacteria’s gliding motility. With the aid of long wavelength approximation, the equations governing the circulation of slime underneath the cells are established and analytically solved. The effects of pseudoplasticity, dilatation and non-Newtonian parameter on the behavior of zirconium concentration, speed of microorganism (bacteria), streamline patterns, and pressure rise for non-Newtonian and Newtonian fluids are compared. The power required for propulsion is also investigated. Physical interpretation for the pertinent variables has been graphically discussed against the parameters under consideration. It is found that with the increase in the concentration of zirconium nanoparticles, the bacterial flow is accelerated and attains its maximum near the rigid substrate wall while an opposite behavior is noticed in the rest region.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.