微悬臂梁上DNA吸附膜的压电和挠曲电效应

IF 4.5 2区 工程技术 Q1 MATHEMATICS, APPLIED Applied Mathematics and Mechanics-English Edition Pub Date : 2023-09-01 DOI:10.1007/s10483-023-3026-5
Yuan Yang, Nenghui Zhang, Hanlin Liu, Jiawei Ling, Zouqing Tan
{"title":"微悬臂梁上DNA吸附膜的压电和挠曲电效应","authors":"Yuan Yang,&nbsp;Nenghui Zhang,&nbsp;Hanlin Liu,&nbsp;Jiawei Ling,&nbsp;Zouqing Tan","doi":"10.1007/s10483-023-3026-5","DOIUrl":null,"url":null,"abstract":"<div><p>DNA-based biosensors have played a huge role in many areas, especially in current global coronavirus outbreak. However, there is a great difficulty in the characterization of piezoelectric and flexoelectric coefficients of the nanoscale DNA film, because the existing experimental methods for hard materials are almost invalid. In addition, the relevant theoretical models for DNA films only consider a single effect without clarifying the difference between the two electromechanical effects on device detection signals. This work aims to present multiscale models for DNA-microcantilever experiments to clarify the competitive mechanism in piezoelectric and flexoelectric effects of DNA films on detection signals. First, a Poisson-Boltzmann (PB) equation is used to predict the potential distribution due to the competition between fixed phosphate groups and mobile salt ions in DNA films. Second, a macroscopic piezoelectric/flexoelectric constitutive equation of the DNA film and a mesoscopic free energy model of the DNA solution are combined to analytically predict the electromechanical coefficients of the DNA film and the relevant microcantilever signals by the deformation equivalent method and Zhang’s two-variable method. Finally, the effects of detection conditions on microscopic interactions, electromechanical coupling coefficients, and deflection signals are studied. Numerical results not only agree well with the experimental observations, but also reveal that the piezoelectric and flexoelectric effects of the DNA film should be equivalently modeled when interpreting microcantilever detection signals. These insights might provide opportunities for the microcantilever biosensor with high sensitivity.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 9","pages":"1547 - 1562"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezoelectric and flexoelectric effects of DNA adsorbed films on microcantilevers\",\"authors\":\"Yuan Yang,&nbsp;Nenghui Zhang,&nbsp;Hanlin Liu,&nbsp;Jiawei Ling,&nbsp;Zouqing Tan\",\"doi\":\"10.1007/s10483-023-3026-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>DNA-based biosensors have played a huge role in many areas, especially in current global coronavirus outbreak. However, there is a great difficulty in the characterization of piezoelectric and flexoelectric coefficients of the nanoscale DNA film, because the existing experimental methods for hard materials are almost invalid. In addition, the relevant theoretical models for DNA films only consider a single effect without clarifying the difference between the two electromechanical effects on device detection signals. This work aims to present multiscale models for DNA-microcantilever experiments to clarify the competitive mechanism in piezoelectric and flexoelectric effects of DNA films on detection signals. First, a Poisson-Boltzmann (PB) equation is used to predict the potential distribution due to the competition between fixed phosphate groups and mobile salt ions in DNA films. Second, a macroscopic piezoelectric/flexoelectric constitutive equation of the DNA film and a mesoscopic free energy model of the DNA solution are combined to analytically predict the electromechanical coefficients of the DNA film and the relevant microcantilever signals by the deformation equivalent method and Zhang’s two-variable method. Finally, the effects of detection conditions on microscopic interactions, electromechanical coupling coefficients, and deflection signals are studied. Numerical results not only agree well with the experimental observations, but also reveal that the piezoelectric and flexoelectric effects of the DNA film should be equivalently modeled when interpreting microcantilever detection signals. These insights might provide opportunities for the microcantilever biosensor with high sensitivity.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 9\",\"pages\":\"1547 - 1562\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-3026-5\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3026-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

基于dna的生物传感器在许多领域发挥了巨大作用,特别是在当前的全球冠状病毒爆发中。然而,由于现有的硬材料实验方法几乎无效,纳米级DNA薄膜的压电和挠曲电系数的表征存在很大的困难。此外,DNA膜的相关理论模型只考虑了单一效应,没有阐明两种机电效应对器件检测信号的区别。本工作旨在建立DNA微悬臂实验的多尺度模型,以阐明DNA薄膜对检测信号的压电和挠曲电效应的竞争机制。首先,利用泊松-玻尔兹曼(PB)方程预测了DNA膜中固定磷酸基团与移动盐离子竞争的电位分布。其次,结合DNA膜的宏观压电/挠曲电本构方程和DNA溶液的介观自由能模型,采用变形等效法和张氏双变量法对DNA膜的机电系数和相关微悬臂信号进行解析预测。最后,研究了检测条件对微观相互作用、机电耦合系数和偏转信号的影响。数值结果不仅与实验结果吻合较好,而且表明在解释微悬臂检测信号时,DNA膜的压电效应和挠曲电效应应等效建模。这些发现可能为高灵敏度的微悬臂生物传感器提供机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Piezoelectric and flexoelectric effects of DNA adsorbed films on microcantilevers

DNA-based biosensors have played a huge role in many areas, especially in current global coronavirus outbreak. However, there is a great difficulty in the characterization of piezoelectric and flexoelectric coefficients of the nanoscale DNA film, because the existing experimental methods for hard materials are almost invalid. In addition, the relevant theoretical models for DNA films only consider a single effect without clarifying the difference between the two electromechanical effects on device detection signals. This work aims to present multiscale models for DNA-microcantilever experiments to clarify the competitive mechanism in piezoelectric and flexoelectric effects of DNA films on detection signals. First, a Poisson-Boltzmann (PB) equation is used to predict the potential distribution due to the competition between fixed phosphate groups and mobile salt ions in DNA films. Second, a macroscopic piezoelectric/flexoelectric constitutive equation of the DNA film and a mesoscopic free energy model of the DNA solution are combined to analytically predict the electromechanical coefficients of the DNA film and the relevant microcantilever signals by the deformation equivalent method and Zhang’s two-variable method. Finally, the effects of detection conditions on microscopic interactions, electromechanical coupling coefficients, and deflection signals are studied. Numerical results not only agree well with the experimental observations, but also reveal that the piezoelectric and flexoelectric effects of the DNA film should be equivalently modeled when interpreting microcantilever detection signals. These insights might provide opportunities for the microcantilever biosensor with high sensitivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
9.10%
发文量
106
审稿时长
2.0 months
期刊介绍: Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China. Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.
期刊最新文献
Fracture of films caused by uniaxial tensions: a numerical model Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model Variable stiffness tuned particle dampers for vibration control of cantilever boring bars Wrinkling in graded core/shell systems using symplectic formulation Nonlinear analysis on electrical properties in a bended composite piezoelectric semiconductor beam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1