流体输送管道的振动控制:最新进展综述

IF 4.5 2区 工程技术 Q1 MATHEMATICS, APPLIED Applied Mathematics and Mechanics-English Edition Pub Date : 2023-09-01 DOI:10.1007/s10483-023-3023-9
Hu Ding, J. C. Ji
{"title":"流体输送管道的振动控制:最新进展综述","authors":"Hu Ding,&nbsp;J. C. Ji","doi":"10.1007/s10483-023-3023-9","DOIUrl":null,"url":null,"abstract":"<div><p>Fluid-conveying pipes are widely used to transfer bulk fluids from one point to another in many engineering applications. They are subject to various excitations from the conveying fluids, the supporting structures, and the working environment, and thus are prone to vibrations such as flow-induced vibrations and acoustic-induced vibrations. Vibrations can generate variable dynamic stress and large deformation on fluid-conveying pipes, leading to vibration-induced fatigue and damage on the pipes, or even leading to failure of the entire piping system and catastrophic accidents. Therefore, the vibration control of fluid-conveying pipes is essential to ensure the integrity and safety of pipeline systems, and has attracted considerable attention from both researchers and engineers. The present paper aims to provide an extensive review of the state-of-the-art research on the vibration control of fluid-conveying pipes. The vibration analysis of fluid-conveying pipes is briefly discussed to show some key issues involved in the vibration analysis. Then, the research progress on the vibration control of fluid-conveying pipes is reviewed from four aspects in terms of passive control, active vibration control, semi-active vibration control, and structural optimization design for vibration reduction. Furthermore, the main results of existing research on the vibration control of fluid-conveying pipes are summarized, and future promising research directions are recommended to address the current research gaps. This paper contributes to the understanding of vibration control of fluid-conveying pipes, and will help the research work on the vibration control of fluid-conveying pipes attract more attention.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 9","pages":"1423 - 1456"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10483-023-3023-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Vibration control of fluid-conveying pipes: a state-of-the-art review\",\"authors\":\"Hu Ding,&nbsp;J. C. Ji\",\"doi\":\"10.1007/s10483-023-3023-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fluid-conveying pipes are widely used to transfer bulk fluids from one point to another in many engineering applications. They are subject to various excitations from the conveying fluids, the supporting structures, and the working environment, and thus are prone to vibrations such as flow-induced vibrations and acoustic-induced vibrations. Vibrations can generate variable dynamic stress and large deformation on fluid-conveying pipes, leading to vibration-induced fatigue and damage on the pipes, or even leading to failure of the entire piping system and catastrophic accidents. Therefore, the vibration control of fluid-conveying pipes is essential to ensure the integrity and safety of pipeline systems, and has attracted considerable attention from both researchers and engineers. The present paper aims to provide an extensive review of the state-of-the-art research on the vibration control of fluid-conveying pipes. The vibration analysis of fluid-conveying pipes is briefly discussed to show some key issues involved in the vibration analysis. Then, the research progress on the vibration control of fluid-conveying pipes is reviewed from four aspects in terms of passive control, active vibration control, semi-active vibration control, and structural optimization design for vibration reduction. Furthermore, the main results of existing research on the vibration control of fluid-conveying pipes are summarized, and future promising research directions are recommended to address the current research gaps. This paper contributes to the understanding of vibration control of fluid-conveying pipes, and will help the research work on the vibration control of fluid-conveying pipes attract more attention.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 9\",\"pages\":\"1423 - 1456\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10483-023-3023-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-3023-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3023-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在许多工程应用中,流体输送管道被广泛用于将散装流体从一点输送到另一点。它们受到来自输送流体、支撑结构和工作环境的各种激励,因此容易产生诸如流激振动和声激振动等振动。振动会对输送流体的管道产生可变动应力和较大的变形,从而导致管道的振动疲劳和损伤,甚至导致整个管道系统的失效和灾难性事故。因此,流体输送管道的振动控制对于保证管道系统的完整性和安全性至关重要,已经引起了研究人员和工程人员的广泛关注。本文综述了流体输送管道振动控制的最新研究进展。简要讨论了流体输送管道的振动分析,指出了振动分析中涉及的一些关键问题。然后,从被动控制、主动振动控制、半主动振动控制、减振结构优化设计四个方面综述了输送管道振动控制的研究进展。总结了流体输送管道振动控制的主要研究成果,并提出了未来的研究方向,以弥补目前的研究空白。本文有助于对流体输送管道振动控制的认识,有助于流体输送管道振动控制的研究工作得到更多的重视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vibration control of fluid-conveying pipes: a state-of-the-art review

Fluid-conveying pipes are widely used to transfer bulk fluids from one point to another in many engineering applications. They are subject to various excitations from the conveying fluids, the supporting structures, and the working environment, and thus are prone to vibrations such as flow-induced vibrations and acoustic-induced vibrations. Vibrations can generate variable dynamic stress and large deformation on fluid-conveying pipes, leading to vibration-induced fatigue and damage on the pipes, or even leading to failure of the entire piping system and catastrophic accidents. Therefore, the vibration control of fluid-conveying pipes is essential to ensure the integrity and safety of pipeline systems, and has attracted considerable attention from both researchers and engineers. The present paper aims to provide an extensive review of the state-of-the-art research on the vibration control of fluid-conveying pipes. The vibration analysis of fluid-conveying pipes is briefly discussed to show some key issues involved in the vibration analysis. Then, the research progress on the vibration control of fluid-conveying pipes is reviewed from four aspects in terms of passive control, active vibration control, semi-active vibration control, and structural optimization design for vibration reduction. Furthermore, the main results of existing research on the vibration control of fluid-conveying pipes are summarized, and future promising research directions are recommended to address the current research gaps. This paper contributes to the understanding of vibration control of fluid-conveying pipes, and will help the research work on the vibration control of fluid-conveying pipes attract more attention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
9.10%
发文量
106
审稿时长
2.0 months
期刊介绍: Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China. Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.
期刊最新文献
Fracture of films caused by uniaxial tensions: a numerical model Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model Variable stiffness tuned particle dampers for vibration control of cantilever boring bars Wrinkling in graded core/shell systems using symplectic formulation Nonlinear analysis on electrical properties in a bended composite piezoelectric semiconductor beam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1