{"title":"具有负热膨胀和负泊松比的超材料芯芯夹层板的静力学、振动和屈曲","authors":"Qiao Zhang, Yuxin Sun","doi":"10.1007/s10483-023-3024-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a three-dimensional (3D) Maltese cross metamaterial with negative Poisson’s ratio (NPR) and negative thermal expansion (NTE) adopted as the core layers in sandwich plates, and aims to explore the relations between the mechanical responses of sandwich composites and the NPR or NTE of the metamaterial. First, the NPR and NTE of the metamaterial are derived analytically based on energy conservation. The effective elastic modulus and mass density of the 3D metamaterial are obtained and validated by the finite element method (FEM). Subsequently, the general governing equation of the 3D sandwich plate under thermal environments is established based on Hamilton’s principle with the consideration of the von Kármán nonlinearity. The differential quadrature (DQ) FEM (DQFEM) is utilized to obtain the numerical solutions. It is shown that NPR and NTE can enhance the global stiffness of sandwich structures. The geometric parameters of the Maltese cross metamaterial significantly affect the responses of the thermal stress, natural frequency, and critical buckling load.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 9","pages":"1457 - 1486"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10483-023-3024-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized by negative thermal expansion and negative Poisson’s ratio\",\"authors\":\"Qiao Zhang, Yuxin Sun\",\"doi\":\"10.1007/s10483-023-3024-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a three-dimensional (3D) Maltese cross metamaterial with negative Poisson’s ratio (NPR) and negative thermal expansion (NTE) adopted as the core layers in sandwich plates, and aims to explore the relations between the mechanical responses of sandwich composites and the NPR or NTE of the metamaterial. First, the NPR and NTE of the metamaterial are derived analytically based on energy conservation. The effective elastic modulus and mass density of the 3D metamaterial are obtained and validated by the finite element method (FEM). Subsequently, the general governing equation of the 3D sandwich plate under thermal environments is established based on Hamilton’s principle with the consideration of the von Kármán nonlinearity. The differential quadrature (DQ) FEM (DQFEM) is utilized to obtain the numerical solutions. It is shown that NPR and NTE can enhance the global stiffness of sandwich structures. The geometric parameters of the Maltese cross metamaterial significantly affect the responses of the thermal stress, natural frequency, and critical buckling load.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 9\",\"pages\":\"1457 - 1486\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10483-023-3024-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-3024-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3024-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized by negative thermal expansion and negative Poisson’s ratio
This paper proposes a three-dimensional (3D) Maltese cross metamaterial with negative Poisson’s ratio (NPR) and negative thermal expansion (NTE) adopted as the core layers in sandwich plates, and aims to explore the relations between the mechanical responses of sandwich composites and the NPR or NTE of the metamaterial. First, the NPR and NTE of the metamaterial are derived analytically based on energy conservation. The effective elastic modulus and mass density of the 3D metamaterial are obtained and validated by the finite element method (FEM). Subsequently, the general governing equation of the 3D sandwich plate under thermal environments is established based on Hamilton’s principle with the consideration of the von Kármán nonlinearity. The differential quadrature (DQ) FEM (DQFEM) is utilized to obtain the numerical solutions. It is shown that NPR and NTE can enhance the global stiffness of sandwich structures. The geometric parameters of the Maltese cross metamaterial significantly affect the responses of the thermal stress, natural frequency, and critical buckling load.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.