{"title":"高速公路自动驾驶入匝道合流:一种新的安全指标在深度强化学习中的应用","authors":"Guofa Li, Weiyan Zhou, Siyan Lin, Shen Li, Xingda Qu","doi":"10.1007/s42154-023-00235-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes an improved decision-making method based on deep reinforcement learning to address on-ramp merging challenges in highway autonomous driving. A novel safety indicator, time difference to merging (TDTM), is introduced, which is used in conjunction with the classic time to collision (TTC) indicator to evaluate driving safety and assist the merging vehicle in finding a suitable gap in traffic, thereby enhancing driving safety. The training of an autonomous driving agent is performed using the Deep Deterministic Policy Gradient (DDPG) algorithm. An action-masking mechanism is deployed to prevent unsafe actions during the policy exploration phase. The proposed DDPG + TDTM + TTC solution is tested in on-ramp merging scenarios with different driving speeds in SUMO and achieves a success rate of 99.96% without significantly impacting traffic efficiency on the main road. The results demonstrate that DDPG + TDTM + TTC achieved a higher on-ramp merging success rate of 99.96% compared to DDPG + TTC and DDPG.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"6 3","pages":"453 - 465"},"PeriodicalIF":4.8000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42154-023-00235-2.pdf","citationCount":"0","resultStr":"{\"title\":\"On-Ramp Merging for Highway Autonomous Driving: An Application of a New Safety Indicator in Deep Reinforcement Learning\",\"authors\":\"Guofa Li, Weiyan Zhou, Siyan Lin, Shen Li, Xingda Qu\",\"doi\":\"10.1007/s42154-023-00235-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes an improved decision-making method based on deep reinforcement learning to address on-ramp merging challenges in highway autonomous driving. A novel safety indicator, time difference to merging (TDTM), is introduced, which is used in conjunction with the classic time to collision (TTC) indicator to evaluate driving safety and assist the merging vehicle in finding a suitable gap in traffic, thereby enhancing driving safety. The training of an autonomous driving agent is performed using the Deep Deterministic Policy Gradient (DDPG) algorithm. An action-masking mechanism is deployed to prevent unsafe actions during the policy exploration phase. The proposed DDPG + TDTM + TTC solution is tested in on-ramp merging scenarios with different driving speeds in SUMO and achieves a success rate of 99.96% without significantly impacting traffic efficiency on the main road. The results demonstrate that DDPG + TDTM + TTC achieved a higher on-ramp merging success rate of 99.96% compared to DDPG + TTC and DDPG.</p></div>\",\"PeriodicalId\":36310,\"journal\":{\"name\":\"Automotive Innovation\",\"volume\":\"6 3\",\"pages\":\"453 - 465\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42154-023-00235-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive Innovation\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42154-023-00235-2\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-023-00235-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
On-Ramp Merging for Highway Autonomous Driving: An Application of a New Safety Indicator in Deep Reinforcement Learning
This paper proposes an improved decision-making method based on deep reinforcement learning to address on-ramp merging challenges in highway autonomous driving. A novel safety indicator, time difference to merging (TDTM), is introduced, which is used in conjunction with the classic time to collision (TTC) indicator to evaluate driving safety and assist the merging vehicle in finding a suitable gap in traffic, thereby enhancing driving safety. The training of an autonomous driving agent is performed using the Deep Deterministic Policy Gradient (DDPG) algorithm. An action-masking mechanism is deployed to prevent unsafe actions during the policy exploration phase. The proposed DDPG + TDTM + TTC solution is tested in on-ramp merging scenarios with different driving speeds in SUMO and achieves a success rate of 99.96% without significantly impacting traffic efficiency on the main road. The results demonstrate that DDPG + TDTM + TTC achieved a higher on-ramp merging success rate of 99.96% compared to DDPG + TTC and DDPG.
期刊介绍:
Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.