{"title":"使用归一化流的神经功能先验变分推理:在微分方程和算子学习问题上的应用","authors":"Xuhui Meng","doi":"10.1007/s10483-023-2997-7","DOIUrl":null,"url":null,"abstract":"<div><p>Physics-informed deep learning has recently emerged as an effective tool for leveraging both observational data and available physical laws. Physics-informed neural networks (PINNs) and deep operator networks (DeepONets) are two such models. The former encodes the physical laws via the automatic differentiation, while the latter learns the hidden physics from data. Generally, the noisy and limited observational data as well as the over-parameterization in neural networks (NNs) result in uncertainty in predictions from deep learning models. In paper “MENG, X., YANG, L., MAO, Z., FERRANDIS, J. D., and KARNIADAKIS, G. E. Learning functional priors and posteriors from data and physics. <i>Journal of Computational Physics</i>, <b>457</b>, 111073 (2022)”, a Bayesian framework based on the generative adversarial networks (GANs) has been proposed as a unified model to quantify uncertainties in predictions of PINNs as well as DeepONets. Specifically, the proposed approach in “MENG, X., YANG, L., MAO, Z., FERRANDIS, J. D., and KARNIADAKIS, G. E. Learning functional priors and posteriors from data and physics. <i>Journal of Computational Physics</i>, <b>457</b>, 111073 (2022)” has two stages: (i) prior learning, and (ii) posterior estimation. At the first stage, the GANs are utilized to learn a functional prior either from a prescribed function distribution, e.g., the Gaussian process, or from historical data and available physics. At the second stage, the Hamiltonian Monte Carlo (HMC) method is utilized to estimate the posterior in the latent space of GANs. However, the vanilla HMC does not support the mini-batch training, which limits its applications in problems with big data. In the present work, we propose to use the normalizing flow (NF) models in the context of variational inference (VI), which naturally enables the mini-batch training, as the alternative to HMC for posterior estimation in the latent space of GANs. A series of numerical experiments, including a nonlinear differential equation problem and a 100-dimensional (100D) Darcy problem, are conducted to demonstrate that the NFs with full-/mini-batch training are able to achieve similar accuracy as the “gold rule” HMC. Moreover, the mini-batch training of NF makes it a promising tool for quantifying uncertainty in solving the high-dimensional partial differential equation (PDE) problems with big data.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 7","pages":"1111 - 1124"},"PeriodicalIF":4.5000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10483-023-2997-7.pdf","citationCount":"2","resultStr":"{\"title\":\"Variational inference in neural functional prior using normalizing flows: application to differential equation and operator learning problems\",\"authors\":\"Xuhui Meng\",\"doi\":\"10.1007/s10483-023-2997-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Physics-informed deep learning has recently emerged as an effective tool for leveraging both observational data and available physical laws. Physics-informed neural networks (PINNs) and deep operator networks (DeepONets) are two such models. The former encodes the physical laws via the automatic differentiation, while the latter learns the hidden physics from data. Generally, the noisy and limited observational data as well as the over-parameterization in neural networks (NNs) result in uncertainty in predictions from deep learning models. In paper “MENG, X., YANG, L., MAO, Z., FERRANDIS, J. D., and KARNIADAKIS, G. E. Learning functional priors and posteriors from data and physics. <i>Journal of Computational Physics</i>, <b>457</b>, 111073 (2022)”, a Bayesian framework based on the generative adversarial networks (GANs) has been proposed as a unified model to quantify uncertainties in predictions of PINNs as well as DeepONets. Specifically, the proposed approach in “MENG, X., YANG, L., MAO, Z., FERRANDIS, J. D., and KARNIADAKIS, G. E. Learning functional priors and posteriors from data and physics. <i>Journal of Computational Physics</i>, <b>457</b>, 111073 (2022)” has two stages: (i) prior learning, and (ii) posterior estimation. At the first stage, the GANs are utilized to learn a functional prior either from a prescribed function distribution, e.g., the Gaussian process, or from historical data and available physics. At the second stage, the Hamiltonian Monte Carlo (HMC) method is utilized to estimate the posterior in the latent space of GANs. However, the vanilla HMC does not support the mini-batch training, which limits its applications in problems with big data. In the present work, we propose to use the normalizing flow (NF) models in the context of variational inference (VI), which naturally enables the mini-batch training, as the alternative to HMC for posterior estimation in the latent space of GANs. A series of numerical experiments, including a nonlinear differential equation problem and a 100-dimensional (100D) Darcy problem, are conducted to demonstrate that the NFs with full-/mini-batch training are able to achieve similar accuracy as the “gold rule” HMC. Moreover, the mini-batch training of NF makes it a promising tool for quantifying uncertainty in solving the high-dimensional partial differential equation (PDE) problems with big data.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 7\",\"pages\":\"1111 - 1124\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10483-023-2997-7.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-2997-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-2997-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Variational inference in neural functional prior using normalizing flows: application to differential equation and operator learning problems
Physics-informed deep learning has recently emerged as an effective tool for leveraging both observational data and available physical laws. Physics-informed neural networks (PINNs) and deep operator networks (DeepONets) are two such models. The former encodes the physical laws via the automatic differentiation, while the latter learns the hidden physics from data. Generally, the noisy and limited observational data as well as the over-parameterization in neural networks (NNs) result in uncertainty in predictions from deep learning models. In paper “MENG, X., YANG, L., MAO, Z., FERRANDIS, J. D., and KARNIADAKIS, G. E. Learning functional priors and posteriors from data and physics. Journal of Computational Physics, 457, 111073 (2022)”, a Bayesian framework based on the generative adversarial networks (GANs) has been proposed as a unified model to quantify uncertainties in predictions of PINNs as well as DeepONets. Specifically, the proposed approach in “MENG, X., YANG, L., MAO, Z., FERRANDIS, J. D., and KARNIADAKIS, G. E. Learning functional priors and posteriors from data and physics. Journal of Computational Physics, 457, 111073 (2022)” has two stages: (i) prior learning, and (ii) posterior estimation. At the first stage, the GANs are utilized to learn a functional prior either from a prescribed function distribution, e.g., the Gaussian process, or from historical data and available physics. At the second stage, the Hamiltonian Monte Carlo (HMC) method is utilized to estimate the posterior in the latent space of GANs. However, the vanilla HMC does not support the mini-batch training, which limits its applications in problems with big data. In the present work, we propose to use the normalizing flow (NF) models in the context of variational inference (VI), which naturally enables the mini-batch training, as the alternative to HMC for posterior estimation in the latent space of GANs. A series of numerical experiments, including a nonlinear differential equation problem and a 100-dimensional (100D) Darcy problem, are conducted to demonstrate that the NFs with full-/mini-batch training are able to achieve similar accuracy as the “gold rule” HMC. Moreover, the mini-batch training of NF makes it a promising tool for quantifying uncertainty in solving the high-dimensional partial differential equation (PDE) problems with big data.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.