{"title":"具有排列非均匀性的随机压电复合材料动态有效电弹性性能的理论研究","authors":"Yanpeng Yue, Yongping Wan","doi":"10.1007/s10483-023-2979-8","DOIUrl":null,"url":null,"abstract":"<div><p>The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem. These solutions can be reduced to the ones of an elastodynamic problem. Based on the effective medium method, these closed-form solutions can be used to establish the self-consistent equations about the frequency-dependent effective parameters, which can be numerically solved by iteration. Theoretical predictions are compared with the experimental results, and good agreement can be found. Furthermore, the analyses on the effects of microstructure and wavelength on the effective properties, resonance frequencies, and attenuation are also presented, which may provide some guidance for the microstructure design and analysis of piezoelectric composites.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 4","pages":"525 - 546"},"PeriodicalIF":4.5000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical study on dynamic effective electroelastic properties of random piezoelectric composites with aligned inhomogeneities\",\"authors\":\"Yanpeng Yue, Yongping Wan\",\"doi\":\"10.1007/s10483-023-2979-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem. These solutions can be reduced to the ones of an elastodynamic problem. Based on the effective medium method, these closed-form solutions can be used to establish the self-consistent equations about the frequency-dependent effective parameters, which can be numerically solved by iteration. Theoretical predictions are compared with the experimental results, and good agreement can be found. Furthermore, the analyses on the effects of microstructure and wavelength on the effective properties, resonance frequencies, and attenuation are also presented, which may provide some guidance for the microstructure design and analysis of piezoelectric composites.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 4\",\"pages\":\"525 - 546\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-2979-8\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-2979-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Theoretical study on dynamic effective electroelastic properties of random piezoelectric composites with aligned inhomogeneities
The closed-form solutions of the dynamic problem of heterogeneous piezoelectric materials are formulated by introducing polarizations into a reference medium and using the generalized reciprocity theorem. These solutions can be reduced to the ones of an elastodynamic problem. Based on the effective medium method, these closed-form solutions can be used to establish the self-consistent equations about the frequency-dependent effective parameters, which can be numerically solved by iteration. Theoretical predictions are compared with the experimental results, and good agreement can be found. Furthermore, the analyses on the effects of microstructure and wavelength on the effective properties, resonance frequencies, and attenuation are also presented, which may provide some guidance for the microstructure design and analysis of piezoelectric composites.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.