Fulin Zhou, Bing Li, Zilong Peng, Jun Fan, Bin Wang
{"title":"声纳自噪声与功能梯度材料声窗的声传输","authors":"Fulin Zhou, Bing Li, Zilong Peng, Jun Fan, Bin Wang","doi":"10.1007/s40857-022-00283-4","DOIUrl":null,"url":null,"abstract":"<div><p>The sonar self-noise characteristics of an acoustic window made from multilayer functionally gradient materials (FGMs) under external turbulent pulsating pressure excitation were theoretically modeled using the multilayer plate (MLP) transfer function method and the turbulent pulsating pressure wavenumber–frequency spectrum. An MLP transfer matrix was used to determine acoustic transmission loss of the multilayer FGM plate under plane wave excitation. The theoretical model was verified by the finite element method. The FGM was fabricated from rubber and fiberglass-reinforced plastics (FRP)/carbon fiber. The acoustical transmission loss of the multilayer FGM plate and noise reduction patterns of the multilayer FGM acoustic windows were assessed at different gradients. The acoustic effect of the window on external sound waves and its spatial filtering effect on external turbulent fluctuation excitations can be adjusted by regulating the proportions of rubber and FRP, which changes the gradient variation pattern.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40857-022-00283-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Sonar Self-noise and Acoustic Transmission of Acoustic Window Made from Functionally Gradient Materials\",\"authors\":\"Fulin Zhou, Bing Li, Zilong Peng, Jun Fan, Bin Wang\",\"doi\":\"10.1007/s40857-022-00283-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sonar self-noise characteristics of an acoustic window made from multilayer functionally gradient materials (FGMs) under external turbulent pulsating pressure excitation were theoretically modeled using the multilayer plate (MLP) transfer function method and the turbulent pulsating pressure wavenumber–frequency spectrum. An MLP transfer matrix was used to determine acoustic transmission loss of the multilayer FGM plate under plane wave excitation. The theoretical model was verified by the finite element method. The FGM was fabricated from rubber and fiberglass-reinforced plastics (FRP)/carbon fiber. The acoustical transmission loss of the multilayer FGM plate and noise reduction patterns of the multilayer FGM acoustic windows were assessed at different gradients. The acoustic effect of the window on external sound waves and its spatial filtering effect on external turbulent fluctuation excitations can be adjusted by regulating the proportions of rubber and FRP, which changes the gradient variation pattern.</p></div>\",\"PeriodicalId\":54355,\"journal\":{\"name\":\"Acoustics Australia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40857-022-00283-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40857-022-00283-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-022-00283-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sonar Self-noise and Acoustic Transmission of Acoustic Window Made from Functionally Gradient Materials
The sonar self-noise characteristics of an acoustic window made from multilayer functionally gradient materials (FGMs) under external turbulent pulsating pressure excitation were theoretically modeled using the multilayer plate (MLP) transfer function method and the turbulent pulsating pressure wavenumber–frequency spectrum. An MLP transfer matrix was used to determine acoustic transmission loss of the multilayer FGM plate under plane wave excitation. The theoretical model was verified by the finite element method. The FGM was fabricated from rubber and fiberglass-reinforced plastics (FRP)/carbon fiber. The acoustical transmission loss of the multilayer FGM plate and noise reduction patterns of the multilayer FGM acoustic windows were assessed at different gradients. The acoustic effect of the window on external sound waves and its spatial filtering effect on external turbulent fluctuation excitations can be adjusted by regulating the proportions of rubber and FRP, which changes the gradient variation pattern.
期刊介绍:
Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.