Hongliang Lu, Chao Lu, Yang Yu, Guangming Xiong, Jianwei Gong
{"title":"基于层次强化学习的考虑社会偏好的智能车辆自动超车","authors":"Hongliang Lu, Chao Lu, Yang Yu, Guangming Xiong, Jianwei Gong","doi":"10.1007/s42154-022-00177-1","DOIUrl":null,"url":null,"abstract":"<div><p>As intelligent vehicles usually have complex overtaking process, a safe and efficient automated overtaking system (AOS) is vital to avoid accidents caused by wrong operation of drivers. Existing AOSs rarely consider longitudinal reactions of the overtaken vehicle (OV) during overtaking. This paper proposed a novel AOS based on hierarchical reinforcement learning, where the longitudinal reaction is given by a data-driven social preference estimation. This AOS incorporates two modules that can function in different overtaking phases. The first module based on semi-Markov decision process and motion primitives is built for motion planning and control. The second module based on Markov decision process is designed to enable vehicles to make proper decisions according to the social preference of OV. Based on realistic overtaking data, the proposed AOS and its modules are verified experimentally. The results of the tests show that the proposed AOS can realize safe and effective overtaking in scenes built by realistic data, and has the ability to flexibly adjust lateral driving behavior and lane changing position when the OVs have different social preferences.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"5 2","pages":"195 - 208"},"PeriodicalIF":4.8000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42154-022-00177-1.pdf","citationCount":"5","resultStr":"{\"title\":\"Autonomous Overtaking for Intelligent Vehicles Considering Social Preference Based on Hierarchical Reinforcement Learning\",\"authors\":\"Hongliang Lu, Chao Lu, Yang Yu, Guangming Xiong, Jianwei Gong\",\"doi\":\"10.1007/s42154-022-00177-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As intelligent vehicles usually have complex overtaking process, a safe and efficient automated overtaking system (AOS) is vital to avoid accidents caused by wrong operation of drivers. Existing AOSs rarely consider longitudinal reactions of the overtaken vehicle (OV) during overtaking. This paper proposed a novel AOS based on hierarchical reinforcement learning, where the longitudinal reaction is given by a data-driven social preference estimation. This AOS incorporates two modules that can function in different overtaking phases. The first module based on semi-Markov decision process and motion primitives is built for motion planning and control. The second module based on Markov decision process is designed to enable vehicles to make proper decisions according to the social preference of OV. Based on realistic overtaking data, the proposed AOS and its modules are verified experimentally. The results of the tests show that the proposed AOS can realize safe and effective overtaking in scenes built by realistic data, and has the ability to flexibly adjust lateral driving behavior and lane changing position when the OVs have different social preferences.</p></div>\",\"PeriodicalId\":36310,\"journal\":{\"name\":\"Automotive Innovation\",\"volume\":\"5 2\",\"pages\":\"195 - 208\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42154-022-00177-1.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive Innovation\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42154-022-00177-1\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-022-00177-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Autonomous Overtaking for Intelligent Vehicles Considering Social Preference Based on Hierarchical Reinforcement Learning
As intelligent vehicles usually have complex overtaking process, a safe and efficient automated overtaking system (AOS) is vital to avoid accidents caused by wrong operation of drivers. Existing AOSs rarely consider longitudinal reactions of the overtaken vehicle (OV) during overtaking. This paper proposed a novel AOS based on hierarchical reinforcement learning, where the longitudinal reaction is given by a data-driven social preference estimation. This AOS incorporates two modules that can function in different overtaking phases. The first module based on semi-Markov decision process and motion primitives is built for motion planning and control. The second module based on Markov decision process is designed to enable vehicles to make proper decisions according to the social preference of OV. Based on realistic overtaking data, the proposed AOS and its modules are verified experimentally. The results of the tests show that the proposed AOS can realize safe and effective overtaking in scenes built by realistic data, and has the ability to flexibly adjust lateral driving behavior and lane changing position when the OVs have different social preferences.
期刊介绍:
Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.