一种创新的氩气/米勒动力循环内燃机:其效率和功率密度的热力学分析

IF 4.8 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Automotive Innovation Pub Date : 2023-01-05 DOI:10.1007/s42154-022-00208-x
Chenxu Wang, Shaoye Jin, Jun Deng, Liguang Li
{"title":"一种创新的氩气/米勒动力循环内燃机:其效率和功率密度的热力学分析","authors":"Chenxu Wang,&nbsp;Shaoye Jin,&nbsp;Jun Deng,&nbsp;Liguang Li","doi":"10.1007/s42154-022-00208-x","DOIUrl":null,"url":null,"abstract":"<div><p>Increasing efficiency and reducing emissions are fundamental approaches to achieving peak carbon emissions and carbon neutrality for the transportation and power industries. The Argon power cycle (APC) is a novel concept for high efficiency and zero emissions. However, APC faces the challenges of severe knock and low power density at high efficiency. To elevate efficiency and power density simultaneously of APC, the Miller cycle is applied and combined with APC. The calculation method is based on a modification of the previous thermodynamic method. The mixture of hydrogen and oxygen is controlled in the stoichiometric ratio. The results indicate that to obtain a thermal conversion efficiency of 70%, in the Otto cycle, the compression ratio and the AR (argon molar ratio in the argon-oxygen mixture) could be 9 and 95%, respectively. In comparison, for the Miller cycle, these two parameters only need to be 7 and 91%. A lower compression ratio can reduce the negative effect of knock, and a reduced <i>AR</i> increases the power density by 66% with the same efficiency. The improvement effect is significant when the expansion-compression ratio is 1.5. Meanwhile, increasing the expansion-compression ratio is more effective in the argon-oxygen mixture than in the nitrogen–oxygen mixture. For the next-generation Argon/Miller power cycle engine, the feasible design to achieve the indicated thermal efficiency of 58.6% should be a compression ratio of 11, an expansion-compression ratio of 1.5, and an AR of 91%.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"6 1","pages":"76 - 88"},"PeriodicalIF":4.8000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42154-022-00208-x.pdf","citationCount":"4","resultStr":"{\"title\":\"An Innovative Argon/Miller Power Cycle for Internal Combustion Engine: Thermodynamic Analysis of its Efficiency and Power Density\",\"authors\":\"Chenxu Wang,&nbsp;Shaoye Jin,&nbsp;Jun Deng,&nbsp;Liguang Li\",\"doi\":\"10.1007/s42154-022-00208-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Increasing efficiency and reducing emissions are fundamental approaches to achieving peak carbon emissions and carbon neutrality for the transportation and power industries. The Argon power cycle (APC) is a novel concept for high efficiency and zero emissions. However, APC faces the challenges of severe knock and low power density at high efficiency. To elevate efficiency and power density simultaneously of APC, the Miller cycle is applied and combined with APC. The calculation method is based on a modification of the previous thermodynamic method. The mixture of hydrogen and oxygen is controlled in the stoichiometric ratio. The results indicate that to obtain a thermal conversion efficiency of 70%, in the Otto cycle, the compression ratio and the AR (argon molar ratio in the argon-oxygen mixture) could be 9 and 95%, respectively. In comparison, for the Miller cycle, these two parameters only need to be 7 and 91%. A lower compression ratio can reduce the negative effect of knock, and a reduced <i>AR</i> increases the power density by 66% with the same efficiency. The improvement effect is significant when the expansion-compression ratio is 1.5. Meanwhile, increasing the expansion-compression ratio is more effective in the argon-oxygen mixture than in the nitrogen–oxygen mixture. For the next-generation Argon/Miller power cycle engine, the feasible design to achieve the indicated thermal efficiency of 58.6% should be a compression ratio of 11, an expansion-compression ratio of 1.5, and an AR of 91%.</p></div>\",\"PeriodicalId\":36310,\"journal\":{\"name\":\"Automotive Innovation\",\"volume\":\"6 1\",\"pages\":\"76 - 88\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42154-022-00208-x.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive Innovation\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42154-022-00208-x\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-022-00208-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

提高效率和减少排放是交通和电力行业实现碳排放峰值和碳中和的根本途径。氩气动力循环(APC)是一种高效、零排放的新概念。然而,APC在高效率下面临严重爆震和低功率密度的挑战。为了同时提高APC的效率和功率密度,采用米勒循环并与APC相结合。该计算方法是在原有热力学方法的基础上改进而来的。氢和氧的混合物被控制在一定的化学计量比内。结果表明,为了获得70%的热转换效率,在奥托循环中,压缩比和AR(氩氧混合物中氩的摩尔比)分别为9和95%。相比之下,对于米勒周期,这两个参数只需要为7和91%。较低的压缩比可以减少爆震的负面影响,在相同的效率下,降低的AR可使功率密度提高66%。膨胀压缩比为1.5时,改善效果显著。同时,增大膨胀压缩比在氩氧混合物中比在氮氧混合物中更有效。对于下一代Argon/Miller动力循环发动机,实现58.6%的热效率的可行设计应该是压缩比为11,膨胀压缩比为1.5,AR为91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Innovative Argon/Miller Power Cycle for Internal Combustion Engine: Thermodynamic Analysis of its Efficiency and Power Density

Increasing efficiency and reducing emissions are fundamental approaches to achieving peak carbon emissions and carbon neutrality for the transportation and power industries. The Argon power cycle (APC) is a novel concept for high efficiency and zero emissions. However, APC faces the challenges of severe knock and low power density at high efficiency. To elevate efficiency and power density simultaneously of APC, the Miller cycle is applied and combined with APC. The calculation method is based on a modification of the previous thermodynamic method. The mixture of hydrogen and oxygen is controlled in the stoichiometric ratio. The results indicate that to obtain a thermal conversion efficiency of 70%, in the Otto cycle, the compression ratio and the AR (argon molar ratio in the argon-oxygen mixture) could be 9 and 95%, respectively. In comparison, for the Miller cycle, these two parameters only need to be 7 and 91%. A lower compression ratio can reduce the negative effect of knock, and a reduced AR increases the power density by 66% with the same efficiency. The improvement effect is significant when the expansion-compression ratio is 1.5. Meanwhile, increasing the expansion-compression ratio is more effective in the argon-oxygen mixture than in the nitrogen–oxygen mixture. For the next-generation Argon/Miller power cycle engine, the feasible design to achieve the indicated thermal efficiency of 58.6% should be a compression ratio of 11, an expansion-compression ratio of 1.5, and an AR of 91%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automotive Innovation
Automotive Innovation Engineering-Automotive Engineering
CiteScore
8.50
自引率
4.90%
发文量
36
期刊介绍: Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.
期刊最新文献
Driver Steering Behaviour Modelling Based on Neuromuscular Dynamics and Multi-Task Time-Series Transformer Mechanically Joined Extrusion Profiles for Battery Trays Mode Switching and Consistency Control for Electric-Hydraulic Hybrid Steering System Review of Electrical and Electronic Architectures for Autonomous Vehicles: Topologies, Networking and Simulators In-Vehicle Network Injection Attacks Detection Based on Feature Selection and Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1