Simon De Vos, Toon Vanderschueren, Tim Verdonck, Wouter Verbeke
{"title":"健壮的依赖实例的成本敏感分类","authors":"Simon De Vos, Toon Vanderschueren, Tim Verdonck, Wouter Verbeke","doi":"10.1007/s11634-022-00533-3","DOIUrl":null,"url":null,"abstract":"<div><p>Instance-dependent cost-sensitive (IDCS) learning methods have proven useful for binary classification tasks where individual instances are associated with variable misclassification costs. However, we demonstrate in this paper by means of a series of experiments that IDCS methods are sensitive to noise and outliers in relation to instance-dependent misclassification costs and their performance strongly depends on the cost distribution of the data sample. Therefore, we propose a generic three-step framework to make IDCS methods more robust: (i) detect outliers automatically, (ii) correct outlying cost information in a data-driven way, and (iii) construct an IDCS learning method using the adjusted cost information. We apply this framework to cslogit, a logistic regression-based IDCS method, to obtain its robust version, which we name r-cslogit. The robustness of this approach is introduced in steps (i) and (ii), where we make use of robust estimators to detect and impute outlying costs of individual instances. The newly proposed r-cslogit method is tested on synthetic and semi-synthetic data and proven to be superior in terms of savings compared to its non-robust counterpart for variable levels of noise and outliers. All our code is made available online at https://github.com/SimonDeVos/Robust-IDCS.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"17 4","pages":"1057 - 1079"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust instance-dependent cost-sensitive classification\",\"authors\":\"Simon De Vos, Toon Vanderschueren, Tim Verdonck, Wouter Verbeke\",\"doi\":\"10.1007/s11634-022-00533-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Instance-dependent cost-sensitive (IDCS) learning methods have proven useful for binary classification tasks where individual instances are associated with variable misclassification costs. However, we demonstrate in this paper by means of a series of experiments that IDCS methods are sensitive to noise and outliers in relation to instance-dependent misclassification costs and their performance strongly depends on the cost distribution of the data sample. Therefore, we propose a generic three-step framework to make IDCS methods more robust: (i) detect outliers automatically, (ii) correct outlying cost information in a data-driven way, and (iii) construct an IDCS learning method using the adjusted cost information. We apply this framework to cslogit, a logistic regression-based IDCS method, to obtain its robust version, which we name r-cslogit. The robustness of this approach is introduced in steps (i) and (ii), where we make use of robust estimators to detect and impute outlying costs of individual instances. The newly proposed r-cslogit method is tested on synthetic and semi-synthetic data and proven to be superior in terms of savings compared to its non-robust counterpart for variable levels of noise and outliers. All our code is made available online at https://github.com/SimonDeVos/Robust-IDCS.</p></div>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"17 4\",\"pages\":\"1057 - 1079\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11634-022-00533-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-022-00533-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Instance-dependent cost-sensitive (IDCS) learning methods have proven useful for binary classification tasks where individual instances are associated with variable misclassification costs. However, we demonstrate in this paper by means of a series of experiments that IDCS methods are sensitive to noise and outliers in relation to instance-dependent misclassification costs and their performance strongly depends on the cost distribution of the data sample. Therefore, we propose a generic three-step framework to make IDCS methods more robust: (i) detect outliers automatically, (ii) correct outlying cost information in a data-driven way, and (iii) construct an IDCS learning method using the adjusted cost information. We apply this framework to cslogit, a logistic regression-based IDCS method, to obtain its robust version, which we name r-cslogit. The robustness of this approach is introduced in steps (i) and (ii), where we make use of robust estimators to detect and impute outlying costs of individual instances. The newly proposed r-cslogit method is tested on synthetic and semi-synthetic data and proven to be superior in terms of savings compared to its non-robust counterpart for variable levels of noise and outliers. All our code is made available online at https://github.com/SimonDeVos/Robust-IDCS.
期刊介绍:
The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.