Sebastian Jakobi, Katja Meckel, Carlo Mereghetti, Beatrice Palano
{"title":"恒长队列自动机的描述能力","authors":"Sebastian Jakobi, Katja Meckel, Carlo Mereghetti, Beatrice Palano","doi":"10.1007/s00236-021-00398-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the notion of a <i>constant length queue automaton</i>—i.e., a traditional queue automaton with a built-in constant limit on the length of its queue—as a formalism for representing regular languages. We show that the descriptional power of constant length queue automata greatly outperforms that of traditional finite state automata, of constant height pushdown automata, and of straight line programs for regular expressions, by providing optimal exponential and double-exponential size gaps. Moreover, we prove that constant height pushdown automata can be simulated by constant length queue automata paying only by a linear size increase, and that removing nondeterminism in constant length queue automata requires an optimal exponential size blow-up, against the optimal double-exponential cost for determinizing constant height pushdown automata. Finally, we investigate the size cost of implementing Boolean language operations on deterministic and nondeterministic constant length queue automata.\n</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":"58 4","pages":"335 - 356"},"PeriodicalIF":0.4000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00236-021-00398-7","citationCount":"1","resultStr":"{\"title\":\"The descriptional power of queue automata of constant length\",\"authors\":\"Sebastian Jakobi, Katja Meckel, Carlo Mereghetti, Beatrice Palano\",\"doi\":\"10.1007/s00236-021-00398-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the notion of a <i>constant length queue automaton</i>—i.e., a traditional queue automaton with a built-in constant limit on the length of its queue—as a formalism for representing regular languages. We show that the descriptional power of constant length queue automata greatly outperforms that of traditional finite state automata, of constant height pushdown automata, and of straight line programs for regular expressions, by providing optimal exponential and double-exponential size gaps. Moreover, we prove that constant height pushdown automata can be simulated by constant length queue automata paying only by a linear size increase, and that removing nondeterminism in constant length queue automata requires an optimal exponential size blow-up, against the optimal double-exponential cost for determinizing constant height pushdown automata. Finally, we investigate the size cost of implementing Boolean language operations on deterministic and nondeterministic constant length queue automata.\\n</p></div>\",\"PeriodicalId\":7189,\"journal\":{\"name\":\"Acta Informatica\",\"volume\":\"58 4\",\"pages\":\"335 - 356\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00236-021-00398-7\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00236-021-00398-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-021-00398-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
The descriptional power of queue automata of constant length
We consider the notion of a constant length queue automaton—i.e., a traditional queue automaton with a built-in constant limit on the length of its queue—as a formalism for representing regular languages. We show that the descriptional power of constant length queue automata greatly outperforms that of traditional finite state automata, of constant height pushdown automata, and of straight line programs for regular expressions, by providing optimal exponential and double-exponential size gaps. Moreover, we prove that constant height pushdown automata can be simulated by constant length queue automata paying only by a linear size increase, and that removing nondeterminism in constant length queue automata requires an optimal exponential size blow-up, against the optimal double-exponential cost for determinizing constant height pushdown automata. Finally, we investigate the size cost of implementing Boolean language operations on deterministic and nondeterministic constant length queue automata.
期刊介绍:
Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics.
Topics of interest include:
• semantics of programming languages
• models and modeling languages for concurrent, distributed, reactive and mobile systems
• models and modeling languages for timed, hybrid and probabilistic systems
• specification, program analysis and verification
• model checking and theorem proving
• modal, temporal, first- and higher-order logics, and their variants
• constraint logic, SAT/SMT-solving techniques
• theoretical aspects of databases, semi-structured data and finite model theory
• theoretical aspects of artificial intelligence, knowledge representation, description logic
• automata theory, formal languages, term and graph rewriting
• game-based models, synthesis
• type theory, typed calculi
• algebraic, coalgebraic and categorical methods
• formal aspects of performance, dependability and reliability analysis
• foundations of information and network security
• parallel, distributed and randomized algorithms
• design and analysis of algorithms
• foundations of network and communication protocols.