René Scheer, Yannick Bergheim, Simon Aleff, Daniel Heintges, Niclas Rahner, Rafael Gries, Jakob Andert
{"title":"基于实时平台的永磁同步电机虚拟样机开发方法——以温度灵敏度为例","authors":"René Scheer, Yannick Bergheim, Simon Aleff, Daniel Heintges, Niclas Rahner, Rafael Gries, Jakob Andert","doi":"10.1007/s42154-022-00186-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a comprehensive evaluation of system interactions in a battery electric vehicle caused by temperature sensitivity of permanent magnet synchronous machines (PMSM). An analytical model of a PMSM considering iron losses and thermal impact is implemented on a field programmable gate array suitable for hardware-in-the-loop testing. By the presented virtual prototyping approach, different machine characteristics defined by the design are used to parameterize the analytical model. The investigated temperature effect is understood as an interacting influence between machine characteristics and control, which are investigated in terms of torque generation, voltage utilization and efficiency under closed-loop condition in a vehicle environment. In particular, using a surface permanent magnet rotor and an interior permanent magnet rotor, the performance of both machine designs is analyzed by varying temperature-adjusted feedforward control strategies on the basis of a driving cycle from a racetrack. The comparison shows that the machine design with surface-mounted magnets is associated with higher temperature sensitivity. In this case, the temperature consideration in the feedforward control provides a <span>\\(14\\,\\%\\)</span> loss reduction in closed-loop vehicle test operation. It can be summarized that the electromagnetic torque is less sensitive to a temperature variation with increasing reluctance. The presented development approach demonstrates the impact of interactions in electric powertrains without the need of real prototypes.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"5 3","pages":"285 - 298"},"PeriodicalIF":4.8000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42154-022-00186-0.pdf","citationCount":"2","resultStr":"{\"title\":\"A Virtual Prototyping Approach for Development of PMSM on Real-Time Platforms: A Case Study on Temperature Sensitivity\",\"authors\":\"René Scheer, Yannick Bergheim, Simon Aleff, Daniel Heintges, Niclas Rahner, Rafael Gries, Jakob Andert\",\"doi\":\"10.1007/s42154-022-00186-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a comprehensive evaluation of system interactions in a battery electric vehicle caused by temperature sensitivity of permanent magnet synchronous machines (PMSM). An analytical model of a PMSM considering iron losses and thermal impact is implemented on a field programmable gate array suitable for hardware-in-the-loop testing. By the presented virtual prototyping approach, different machine characteristics defined by the design are used to parameterize the analytical model. The investigated temperature effect is understood as an interacting influence between machine characteristics and control, which are investigated in terms of torque generation, voltage utilization and efficiency under closed-loop condition in a vehicle environment. In particular, using a surface permanent magnet rotor and an interior permanent magnet rotor, the performance of both machine designs is analyzed by varying temperature-adjusted feedforward control strategies on the basis of a driving cycle from a racetrack. The comparison shows that the machine design with surface-mounted magnets is associated with higher temperature sensitivity. In this case, the temperature consideration in the feedforward control provides a <span>\\\\(14\\\\,\\\\%\\\\)</span> loss reduction in closed-loop vehicle test operation. It can be summarized that the electromagnetic torque is less sensitive to a temperature variation with increasing reluctance. The presented development approach demonstrates the impact of interactions in electric powertrains without the need of real prototypes.</p></div>\",\"PeriodicalId\":36310,\"journal\":{\"name\":\"Automotive Innovation\",\"volume\":\"5 3\",\"pages\":\"285 - 298\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42154-022-00186-0.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive Innovation\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42154-022-00186-0\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-022-00186-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Virtual Prototyping Approach for Development of PMSM on Real-Time Platforms: A Case Study on Temperature Sensitivity
This paper presents a comprehensive evaluation of system interactions in a battery electric vehicle caused by temperature sensitivity of permanent magnet synchronous machines (PMSM). An analytical model of a PMSM considering iron losses and thermal impact is implemented on a field programmable gate array suitable for hardware-in-the-loop testing. By the presented virtual prototyping approach, different machine characteristics defined by the design are used to parameterize the analytical model. The investigated temperature effect is understood as an interacting influence between machine characteristics and control, which are investigated in terms of torque generation, voltage utilization and efficiency under closed-loop condition in a vehicle environment. In particular, using a surface permanent magnet rotor and an interior permanent magnet rotor, the performance of both machine designs is analyzed by varying temperature-adjusted feedforward control strategies on the basis of a driving cycle from a racetrack. The comparison shows that the machine design with surface-mounted magnets is associated with higher temperature sensitivity. In this case, the temperature consideration in the feedforward control provides a \(14\,\%\) loss reduction in closed-loop vehicle test operation. It can be summarized that the electromagnetic torque is less sensitive to a temperature variation with increasing reluctance. The presented development approach demonstrates the impact of interactions in electric powertrains without the need of real prototypes.
期刊介绍:
Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.