{"title":"可逆图灵机的指令集","authors":"Kenichi Morita","doi":"10.1007/s00236-020-00388-1","DOIUrl":null,"url":null,"abstract":"<div><p>A reversible Turing machine (RTM) is a standard model of reversible computing that reflects physical reversibility. So far, to describe an RTM the quadruple formulation and the quintuple formulation have been used. In this paper, we propose the program form as a new formulation for RTMs. There, an RTM is described by a sequence of only five kinds of instructions. It is shown that any RTM in the quintuple form is converted to an RTM in the program form, and <i>vice versa</i>. We also show each instruction is implemented by a particular reversible logic element with memory called a rotary element (RE) very simply. Hence, a circuit that simulates a given RTM is easily and systematically constructed out of REs.</p></div>","PeriodicalId":7189,"journal":{"name":"Acta Informatica","volume":"58 4","pages":"377 - 396"},"PeriodicalIF":0.4000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00236-020-00388-1","citationCount":"0","resultStr":"{\"title\":\"An instruction set for reversible Turing machines\",\"authors\":\"Kenichi Morita\",\"doi\":\"10.1007/s00236-020-00388-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A reversible Turing machine (RTM) is a standard model of reversible computing that reflects physical reversibility. So far, to describe an RTM the quadruple formulation and the quintuple formulation have been used. In this paper, we propose the program form as a new formulation for RTMs. There, an RTM is described by a sequence of only five kinds of instructions. It is shown that any RTM in the quintuple form is converted to an RTM in the program form, and <i>vice versa</i>. We also show each instruction is implemented by a particular reversible logic element with memory called a rotary element (RE) very simply. Hence, a circuit that simulates a given RTM is easily and systematically constructed out of REs.</p></div>\",\"PeriodicalId\":7189,\"journal\":{\"name\":\"Acta Informatica\",\"volume\":\"58 4\",\"pages\":\"377 - 396\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00236-020-00388-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00236-020-00388-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00236-020-00388-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A reversible Turing machine (RTM) is a standard model of reversible computing that reflects physical reversibility. So far, to describe an RTM the quadruple formulation and the quintuple formulation have been used. In this paper, we propose the program form as a new formulation for RTMs. There, an RTM is described by a sequence of only five kinds of instructions. It is shown that any RTM in the quintuple form is converted to an RTM in the program form, and vice versa. We also show each instruction is implemented by a particular reversible logic element with memory called a rotary element (RE) very simply. Hence, a circuit that simulates a given RTM is easily and systematically constructed out of REs.
期刊介绍:
Acta Informatica provides international dissemination of articles on formal methods for the design and analysis of programs, computing systems and information structures, as well as related fields of Theoretical Computer Science such as Automata Theory, Logic in Computer Science, and Algorithmics.
Topics of interest include:
• semantics of programming languages
• models and modeling languages for concurrent, distributed, reactive and mobile systems
• models and modeling languages for timed, hybrid and probabilistic systems
• specification, program analysis and verification
• model checking and theorem proving
• modal, temporal, first- and higher-order logics, and their variants
• constraint logic, SAT/SMT-solving techniques
• theoretical aspects of databases, semi-structured data and finite model theory
• theoretical aspects of artificial intelligence, knowledge representation, description logic
• automata theory, formal languages, term and graph rewriting
• game-based models, synthesis
• type theory, typed calculi
• algebraic, coalgebraic and categorical methods
• formal aspects of performance, dependability and reliability analysis
• foundations of information and network security
• parallel, distributed and randomized algorithms
• design and analysis of algorithms
• foundations of network and communication protocols.