Mohsen Asghari, Mohammad Zareinejad, Seyed Mehdi Rezaei, Hamidreza Amindavar
{"title":"脉冲噪声环境下经验特征函数鲁棒匹配场处理","authors":"Mohsen Asghari, Mohammad Zareinejad, Seyed Mehdi Rezaei, Hamidreza Amindavar","doi":"10.1007/s40857-023-00287-8","DOIUrl":null,"url":null,"abstract":"<div><p>Matched Field Processing (MFP) is an inversion technique often employed in source localization applications. Conventional MFP approaches are incapable of producing precise results in the presence of extremely impulsive noises, which are typically present in actual applications such as underwater acoustics. This is because the covariance matrix for this category of noises does not converge. Moreover, impulsive noise suppression algorithms fail to provide accurate results. Particularly, fractional lower order moment (FLOM)-based approaches have an unbounded output, and data trimming methods introduce uncertainty into the estimation covariance matrix. In this study, a novel MFP method employing the empirical characteristic function (ECF) is developed. The desirable properties of the characteristic function (CF) result in a robust localization method that is ideally suited for extremely strong tailed noise environments. Using the CF array output, a new covariance-like matrix that can be used in MFP methods has been constructed. To demonstrate the efficiency of the ECF-MFP technique, experiments are conducted in a water tank. Experimental results reveal that this method is very robust in the presence of very heavy tailed noise, a low signal-to-noise ratio, and a tiny sample size. Additionally, it outperforms previous approaches in terms of resolution probability.\n</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Matched Field Processing Using an Empirical Characteristic Function Approach Under Impulsive Noise Environments\",\"authors\":\"Mohsen Asghari, Mohammad Zareinejad, Seyed Mehdi Rezaei, Hamidreza Amindavar\",\"doi\":\"10.1007/s40857-023-00287-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Matched Field Processing (MFP) is an inversion technique often employed in source localization applications. Conventional MFP approaches are incapable of producing precise results in the presence of extremely impulsive noises, which are typically present in actual applications such as underwater acoustics. This is because the covariance matrix for this category of noises does not converge. Moreover, impulsive noise suppression algorithms fail to provide accurate results. Particularly, fractional lower order moment (FLOM)-based approaches have an unbounded output, and data trimming methods introduce uncertainty into the estimation covariance matrix. In this study, a novel MFP method employing the empirical characteristic function (ECF) is developed. The desirable properties of the characteristic function (CF) result in a robust localization method that is ideally suited for extremely strong tailed noise environments. Using the CF array output, a new covariance-like matrix that can be used in MFP methods has been constructed. To demonstrate the efficiency of the ECF-MFP technique, experiments are conducted in a water tank. Experimental results reveal that this method is very robust in the presence of very heavy tailed noise, a low signal-to-noise ratio, and a tiny sample size. Additionally, it outperforms previous approaches in terms of resolution probability.\\n</p></div>\",\"PeriodicalId\":54355,\"journal\":{\"name\":\"Acoustics Australia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40857-023-00287-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-023-00287-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Matched Field Processing Using an Empirical Characteristic Function Approach Under Impulsive Noise Environments
Matched Field Processing (MFP) is an inversion technique often employed in source localization applications. Conventional MFP approaches are incapable of producing precise results in the presence of extremely impulsive noises, which are typically present in actual applications such as underwater acoustics. This is because the covariance matrix for this category of noises does not converge. Moreover, impulsive noise suppression algorithms fail to provide accurate results. Particularly, fractional lower order moment (FLOM)-based approaches have an unbounded output, and data trimming methods introduce uncertainty into the estimation covariance matrix. In this study, a novel MFP method employing the empirical characteristic function (ECF) is developed. The desirable properties of the characteristic function (CF) result in a robust localization method that is ideally suited for extremely strong tailed noise environments. Using the CF array output, a new covariance-like matrix that can be used in MFP methods has been constructed. To demonstrate the efficiency of the ECF-MFP technique, experiments are conducted in a water tank. Experimental results reveal that this method is very robust in the presence of very heavy tailed noise, a low signal-to-noise ratio, and a tiny sample size. Additionally, it outperforms previous approaches in terms of resolution probability.
期刊介绍:
Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.