{"title":"抑制锂离子电池电极脱粘的集流器预应变策略","authors":"Bo Rui, Bo Lu, Yicheng Song, Junqian Zhang","doi":"10.1007/s10483-023-2976-9","DOIUrl":null,"url":null,"abstract":"<div><p>The interfacial debonding between the active layer and the current collector has been recognized as a critical mechanism for battery fading, and thus has attracted great efforts focused on the related analyses. However, much still remains to be studied regarding practical methods for suppressing electrode debonding, especially from the perspective of mechanics. In this paper, a pre-strain strategy of current collectors to alleviate electrode debonding is proposed. An analytical model for a symmetric electrode with a deformable and limited-thickness current collector is developed to analyze the debonding behavior involving both a pre-strain of the current collector and an eigen-strain of the active layers. The results reveal that the well-designed pre-strain can significantly delay the debonding onset (by up to 100%) and considerably reduce the debonding size. The critical values of the pre-strain are identified, and the pre-strain design principles are also provided. Based on these findings, this work sheds light on the mechanical design to suppress electrode degradation.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 4","pages":"547 - 560"},"PeriodicalIF":4.5000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A pre-strain strategy of current collectors for suppressing electrode debonding in lithium-ion batteries\",\"authors\":\"Bo Rui, Bo Lu, Yicheng Song, Junqian Zhang\",\"doi\":\"10.1007/s10483-023-2976-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The interfacial debonding between the active layer and the current collector has been recognized as a critical mechanism for battery fading, and thus has attracted great efforts focused on the related analyses. However, much still remains to be studied regarding practical methods for suppressing electrode debonding, especially from the perspective of mechanics. In this paper, a pre-strain strategy of current collectors to alleviate electrode debonding is proposed. An analytical model for a symmetric electrode with a deformable and limited-thickness current collector is developed to analyze the debonding behavior involving both a pre-strain of the current collector and an eigen-strain of the active layers. The results reveal that the well-designed pre-strain can significantly delay the debonding onset (by up to 100%) and considerably reduce the debonding size. The critical values of the pre-strain are identified, and the pre-strain design principles are also provided. Based on these findings, this work sheds light on the mechanical design to suppress electrode degradation.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 4\",\"pages\":\"547 - 560\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-2976-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-2976-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A pre-strain strategy of current collectors for suppressing electrode debonding in lithium-ion batteries
The interfacial debonding between the active layer and the current collector has been recognized as a critical mechanism for battery fading, and thus has attracted great efforts focused on the related analyses. However, much still remains to be studied regarding practical methods for suppressing electrode debonding, especially from the perspective of mechanics. In this paper, a pre-strain strategy of current collectors to alleviate electrode debonding is proposed. An analytical model for a symmetric electrode with a deformable and limited-thickness current collector is developed to analyze the debonding behavior involving both a pre-strain of the current collector and an eigen-strain of the active layers. The results reveal that the well-designed pre-strain can significantly delay the debonding onset (by up to 100%) and considerably reduce the debonding size. The critical values of the pre-strain are identified, and the pre-strain design principles are also provided. Based on these findings, this work sheds light on the mechanical design to suppress electrode degradation.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.