{"title":"一种创新的基于五阶Cubature Kalman滤波器的锂离子电池充电状态估计方法","authors":"Huang Yi, Shichun Yang, Sida Zhou, Xinan Zhou, Xiaoyu Yan, Xinhua Liu","doi":"10.1007/s42154-021-00162-0","DOIUrl":null,"url":null,"abstract":"<div><p>The lithium-ion batteries have drawn much attention as the major energy storage system. However, the battery state estimation still suffers from inaccuracy under dynamic operational conditions, with the unstable environmental noise influencing the robustness of estimation. This paper presents a 5th-order cubature Kalman filter with improvements on adaptivity for real-time state-of-charge estimation. The second-order equivalent circuit model is developed for describing the characteristics of battery, and parameter identification is carried out according to particle swarm optimization. The developed method is validated in stable and dynamic conditions, and simulation results show a satisfactory consistency with the experimental results. The maximum estimation error under static conditions is less than 3% and the maximum error under dynamic conditions is 5%. Numerical analysis indicates that the method has better convergence and robustness than the traditional method under the disturbances of initial error, which demonstrates the potential for EV applications in harsh environments. The proposed method shows application potential for both online estimations and cloud-computing system, indicating its diverse application prospect in electric vehicles.</p></div>","PeriodicalId":36310,"journal":{"name":"Automotive Innovation","volume":"4 4","pages":"448 - 458"},"PeriodicalIF":4.8000,"publicationDate":"2021-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42154-021-00162-0.pdf","citationCount":"5","resultStr":"{\"title\":\"An Innovative State-of-charge Estimation Method of Lithium-ion Battery Based on 5th-order Cubature Kalman Filter\",\"authors\":\"Huang Yi, Shichun Yang, Sida Zhou, Xinan Zhou, Xiaoyu Yan, Xinhua Liu\",\"doi\":\"10.1007/s42154-021-00162-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The lithium-ion batteries have drawn much attention as the major energy storage system. However, the battery state estimation still suffers from inaccuracy under dynamic operational conditions, with the unstable environmental noise influencing the robustness of estimation. This paper presents a 5th-order cubature Kalman filter with improvements on adaptivity for real-time state-of-charge estimation. The second-order equivalent circuit model is developed for describing the characteristics of battery, and parameter identification is carried out according to particle swarm optimization. The developed method is validated in stable and dynamic conditions, and simulation results show a satisfactory consistency with the experimental results. The maximum estimation error under static conditions is less than 3% and the maximum error under dynamic conditions is 5%. Numerical analysis indicates that the method has better convergence and robustness than the traditional method under the disturbances of initial error, which demonstrates the potential for EV applications in harsh environments. The proposed method shows application potential for both online estimations and cloud-computing system, indicating its diverse application prospect in electric vehicles.</p></div>\",\"PeriodicalId\":36310,\"journal\":{\"name\":\"Automotive Innovation\",\"volume\":\"4 4\",\"pages\":\"448 - 458\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2021-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42154-021-00162-0.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automotive Innovation\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42154-021-00162-0\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive Innovation","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1007/s42154-021-00162-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Innovative State-of-charge Estimation Method of Lithium-ion Battery Based on 5th-order Cubature Kalman Filter
The lithium-ion batteries have drawn much attention as the major energy storage system. However, the battery state estimation still suffers from inaccuracy under dynamic operational conditions, with the unstable environmental noise influencing the robustness of estimation. This paper presents a 5th-order cubature Kalman filter with improvements on adaptivity for real-time state-of-charge estimation. The second-order equivalent circuit model is developed for describing the characteristics of battery, and parameter identification is carried out according to particle swarm optimization. The developed method is validated in stable and dynamic conditions, and simulation results show a satisfactory consistency with the experimental results. The maximum estimation error under static conditions is less than 3% and the maximum error under dynamic conditions is 5%. Numerical analysis indicates that the method has better convergence and robustness than the traditional method under the disturbances of initial error, which demonstrates the potential for EV applications in harsh environments. The proposed method shows application potential for both online estimations and cloud-computing system, indicating its diverse application prospect in electric vehicles.
期刊介绍:
Automotive Innovation is dedicated to the publication of innovative findings in the automotive field as well as other related disciplines, covering the principles, methodologies, theoretical studies, experimental studies, product engineering and engineering application. The main topics include but are not limited to: energy-saving, electrification, intelligent and connected, new energy vehicle, safety and lightweight technologies. The journal presents the latest trend and advances of automotive technology.