{"title":"夹层功能梯度压电半导体板的多场耦合和自由振动","authors":"Xueqian Fang, Qilin He, Hongwei Ma, Changsong Zhu","doi":"10.1007/s10483-023-3017-6","DOIUrl":null,"url":null,"abstract":"<div><p>Sandwiched functionally-graded piezoelectric semiconductor (FGPS) plates possess high strength and excellent piezoelectric and semiconductor properties, and have significant potential applications in micro-electro-mechanical systems. The multi-field coupling and free vibration of a sandwiched FGPS plate are studied, and the governing equation and natural frequency are derived with the consideration of electron movement. The material properties in the functionally-graded layers are assumed to vary smoothly, and the first-order shear deformation theory is introduced to derive the multi-field coupling in the plate. The total strain energy of the plate is obtained, and the governing equations are presented by using Hamilton’s principle. By introducing the boundary conditions, the coupling physical fields are solved. In numerical examples, the natural frequencies of sandwiched FGPS plates under different geometrical and physical parameters are discussed. It is found that the initial electron density can be used to modulate the natural frequencies and vibrational displacement of sandwiched FGPS plates in the case of nano-size. The effects of the material properties of FGPS layers on the natural frequencies are also examined in detail.</p></div>","PeriodicalId":55498,"journal":{"name":"Applied Mathematics and Mechanics-English Edition","volume":"44 8","pages":"1351 - 1366"},"PeriodicalIF":4.5000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10483-023-3017-6.pdf","citationCount":"2","resultStr":"{\"title\":\"Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate\",\"authors\":\"Xueqian Fang, Qilin He, Hongwei Ma, Changsong Zhu\",\"doi\":\"10.1007/s10483-023-3017-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sandwiched functionally-graded piezoelectric semiconductor (FGPS) plates possess high strength and excellent piezoelectric and semiconductor properties, and have significant potential applications in micro-electro-mechanical systems. The multi-field coupling and free vibration of a sandwiched FGPS plate are studied, and the governing equation and natural frequency are derived with the consideration of electron movement. The material properties in the functionally-graded layers are assumed to vary smoothly, and the first-order shear deformation theory is introduced to derive the multi-field coupling in the plate. The total strain energy of the plate is obtained, and the governing equations are presented by using Hamilton’s principle. By introducing the boundary conditions, the coupling physical fields are solved. In numerical examples, the natural frequencies of sandwiched FGPS plates under different geometrical and physical parameters are discussed. It is found that the initial electron density can be used to modulate the natural frequencies and vibrational displacement of sandwiched FGPS plates in the case of nano-size. The effects of the material properties of FGPS layers on the natural frequencies are also examined in detail.</p></div>\",\"PeriodicalId\":55498,\"journal\":{\"name\":\"Applied Mathematics and Mechanics-English Edition\",\"volume\":\"44 8\",\"pages\":\"1351 - 1366\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10483-023-3017-6.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Mechanics-English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10483-023-3017-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Mechanics-English Edition","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10483-023-3017-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate
Sandwiched functionally-graded piezoelectric semiconductor (FGPS) plates possess high strength and excellent piezoelectric and semiconductor properties, and have significant potential applications in micro-electro-mechanical systems. The multi-field coupling and free vibration of a sandwiched FGPS plate are studied, and the governing equation and natural frequency are derived with the consideration of electron movement. The material properties in the functionally-graded layers are assumed to vary smoothly, and the first-order shear deformation theory is introduced to derive the multi-field coupling in the plate. The total strain energy of the plate is obtained, and the governing equations are presented by using Hamilton’s principle. By introducing the boundary conditions, the coupling physical fields are solved. In numerical examples, the natural frequencies of sandwiched FGPS plates under different geometrical and physical parameters are discussed. It is found that the initial electron density can be used to modulate the natural frequencies and vibrational displacement of sandwiched FGPS plates in the case of nano-size. The effects of the material properties of FGPS layers on the natural frequencies are also examined in detail.
期刊介绍:
Applied Mathematics and Mechanics is the English version of a journal on applied mathematics and mechanics published in the People''s Republic of China. Our Editorial Committee, headed by Professor Chien Weizang, Ph.D., President of Shanghai University, consists of scientists in the fields of applied mathematics and mechanics from all over China.
Founded by Professor Chien Weizang in 1980, Applied Mathematics and Mechanics became a bimonthly in 1981 and then a monthly in 1985. It is a comprehensive journal presenting original research papers on mechanics, mathematical methods and modeling in mechanics as well as applied mathematics relevant to neoteric mechanics.