Olivier Alard, Ananuer Halimulati, Lauren Gorojovsky, Peter Wieland
{"title":"用滴定、XRF和元素分析仪测定37种地质标准物质中硫的质量分数","authors":"Olivier Alard, Ananuer Halimulati, Lauren Gorojovsky, Peter Wieland","doi":"10.1111/ggr.12473","DOIUrl":null,"url":null,"abstract":"<p>Although sulfur is a relatively abundant element, measurement results with small uncertainties remain challenging to achieve, especially at S mass fractions below 100 μg g<sup>-1</sup>. We report > 1700 measurement results of S for thirty-seven geological reference materials including igneous, metamorphic and sedimentary rocks, and one soil. Measurement results were obtained in two laboratories (Macquarie GeoAnalytical and Géosciences Montpellier) over a long period of time ≈ 25 years (1997–2022), using several measurement procedures: X-ray fluorescence, high temperature iodo titration and elemental analysers equipped with thermal conductivity and/or infra-red detectors. Sulfur mass fractions for these diverse geological reference materials range between 5.5 and 11,395 μg g<sup>-1</sup>. While the comprehensive data set reported here should contribute significantly to a better characterisation of the S mass fractions of widely used geological reference materials, computed uncertainties, data distribution and comparison to published values still indicate heterogeneous distribution of S carrier(s) and analytical bias.</p>","PeriodicalId":12631,"journal":{"name":"Geostandards and Geoanalytical Research","volume":"47 2","pages":"437-456"},"PeriodicalIF":2.7000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ggr.12473","citationCount":"0","resultStr":"{\"title\":\"Sulfur Mass Fractions in Thirty-Seven Geological Reference Materials by Titration, XRF and Elemental Analyser\",\"authors\":\"Olivier Alard, Ananuer Halimulati, Lauren Gorojovsky, Peter Wieland\",\"doi\":\"10.1111/ggr.12473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although sulfur is a relatively abundant element, measurement results with small uncertainties remain challenging to achieve, especially at S mass fractions below 100 μg g<sup>-1</sup>. We report > 1700 measurement results of S for thirty-seven geological reference materials including igneous, metamorphic and sedimentary rocks, and one soil. Measurement results were obtained in two laboratories (Macquarie GeoAnalytical and Géosciences Montpellier) over a long period of time ≈ 25 years (1997–2022), using several measurement procedures: X-ray fluorescence, high temperature iodo titration and elemental analysers equipped with thermal conductivity and/or infra-red detectors. Sulfur mass fractions for these diverse geological reference materials range between 5.5 and 11,395 μg g<sup>-1</sup>. While the comprehensive data set reported here should contribute significantly to a better characterisation of the S mass fractions of widely used geological reference materials, computed uncertainties, data distribution and comparison to published values still indicate heterogeneous distribution of S carrier(s) and analytical bias.</p>\",\"PeriodicalId\":12631,\"journal\":{\"name\":\"Geostandards and Geoanalytical Research\",\"volume\":\"47 2\",\"pages\":\"437-456\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ggr.12473\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geostandards and Geoanalytical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12473\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geostandards and Geoanalytical Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12473","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Sulfur Mass Fractions in Thirty-Seven Geological Reference Materials by Titration, XRF and Elemental Analyser
Although sulfur is a relatively abundant element, measurement results with small uncertainties remain challenging to achieve, especially at S mass fractions below 100 μg g-1. We report > 1700 measurement results of S for thirty-seven geological reference materials including igneous, metamorphic and sedimentary rocks, and one soil. Measurement results were obtained in two laboratories (Macquarie GeoAnalytical and Géosciences Montpellier) over a long period of time ≈ 25 years (1997–2022), using several measurement procedures: X-ray fluorescence, high temperature iodo titration and elemental analysers equipped with thermal conductivity and/or infra-red detectors. Sulfur mass fractions for these diverse geological reference materials range between 5.5 and 11,395 μg g-1. While the comprehensive data set reported here should contribute significantly to a better characterisation of the S mass fractions of widely used geological reference materials, computed uncertainties, data distribution and comparison to published values still indicate heterogeneous distribution of S carrier(s) and analytical bias.
期刊介绍:
Geostandards & Geoanalytical Research is an international journal dedicated to advancing the science of reference materials, analytical techniques and data quality relevant to the chemical analysis of geological and environmental samples. Papers are accepted for publication following peer review.