MF-RF:一种基于多特征和随机森林算法的改进共谋利益泛滥攻击检测方法

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Information Security Pub Date : 2022-11-28 DOI:10.1049/ise2.12100
Meng Yue, Silin Peng, Wenzhi Feng
{"title":"MF-RF:一种基于多特征和随机森林算法的改进共谋利益泛滥攻击检测方法","authors":"Meng Yue,&nbsp;Silin Peng,&nbsp;Wenzhi Feng","doi":"10.1049/ise2.12100","DOIUrl":null,"url":null,"abstract":"<p>A new type of Collusive Interest Flooding Attack (CIFA), Improved Collusive Interest Flooding Attack (I-CIFA), which originates from CIFA with a stronger concealment, higher attack effect, lower attack cost, and wider attack range in Named Data Networking (NDN). In order to detect this attack, the present study explores new detection features and establishes a sample set of attack features with different granularities, and accordingly, the Pearson coefficient is used to validate the correlation between the proposed features and the network states. Finally, the Random Forest model is designed to detect the I-CIFA attack. To evaluate the performance of the approach, extensive experiments are conducted in ndnSIM platform. Test results show that the proposed detection approach outperforms other existing approaches with a detection rate of 98.1%, error rate of 1.9%, and false positive rate of 1.5%.</p>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"17 3","pages":"360-376"},"PeriodicalIF":1.3000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2.12100","citationCount":"0","resultStr":"{\"title\":\"MF-RF: A detection approach based on multi-features and random forest algorithm for improved collusive interest flooding attack\",\"authors\":\"Meng Yue,&nbsp;Silin Peng,&nbsp;Wenzhi Feng\",\"doi\":\"10.1049/ise2.12100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new type of Collusive Interest Flooding Attack (CIFA), Improved Collusive Interest Flooding Attack (I-CIFA), which originates from CIFA with a stronger concealment, higher attack effect, lower attack cost, and wider attack range in Named Data Networking (NDN). In order to detect this attack, the present study explores new detection features and establishes a sample set of attack features with different granularities, and accordingly, the Pearson coefficient is used to validate the correlation between the proposed features and the network states. Finally, the Random Forest model is designed to detect the I-CIFA attack. To evaluate the performance of the approach, extensive experiments are conducted in ndnSIM platform. Test results show that the proposed detection approach outperforms other existing approaches with a detection rate of 98.1%, error rate of 1.9%, and false positive rate of 1.5%.</p>\",\"PeriodicalId\":50380,\"journal\":{\"name\":\"IET Information Security\",\"volume\":\"17 3\",\"pages\":\"360-376\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2.12100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ise2.12100\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ise2.12100","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

一种新型的共谋利益淹没攻击(CIFA),即改进的共谋利益泛滥攻击(I-CIFA)。它源于命名数据网络中具有更强的隐蔽性、更高的攻击效果、更低的攻击成本和更宽的攻击范围的CIFA。为了检测这种攻击,本研究探索了新的检测特征,并建立了一个具有不同粒度的攻击特征样本集,因此,使用Pearson系数来验证所提出的特征与网络状态之间的相关性。最后,设计了随机森林模型来检测I-CIFA攻击。为了评估该方法的性能,在ndnSIM平台上进行了大量的实验。测试结果表明,所提出的检测方法优于其他现有方法,检测率为98.1%,错误率为1.9%,假阳性率为1.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MF-RF: A detection approach based on multi-features and random forest algorithm for improved collusive interest flooding attack

A new type of Collusive Interest Flooding Attack (CIFA), Improved Collusive Interest Flooding Attack (I-CIFA), which originates from CIFA with a stronger concealment, higher attack effect, lower attack cost, and wider attack range in Named Data Networking (NDN). In order to detect this attack, the present study explores new detection features and establishes a sample set of attack features with different granularities, and accordingly, the Pearson coefficient is used to validate the correlation between the proposed features and the network states. Finally, the Random Forest model is designed to detect the I-CIFA attack. To evaluate the performance of the approach, extensive experiments are conducted in ndnSIM platform. Test results show that the proposed detection approach outperforms other existing approaches with a detection rate of 98.1%, error rate of 1.9%, and false positive rate of 1.5%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Information Security
IET Information Security 工程技术-计算机:理论方法
CiteScore
3.80
自引率
7.10%
发文量
47
审稿时长
8.6 months
期刊介绍: IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls. Scope: Access Control and Database Security Ad-Hoc Network Aspects Anonymity and E-Voting Authentication Block Ciphers and Hash Functions Blockchain, Bitcoin (Technical aspects only) Broadcast Encryption and Traitor Tracing Combinatorial Aspects Covert Channels and Information Flow Critical Infrastructures Cryptanalysis Dependability Digital Rights Management Digital Signature Schemes Digital Steganography Economic Aspects of Information Security Elliptic Curve Cryptography and Number Theory Embedded Systems Aspects Embedded Systems Security and Forensics Financial Cryptography Firewall Security Formal Methods and Security Verification Human Aspects Information Warfare and Survivability Intrusion Detection Java and XML Security Key Distribution Key Management Malware Multi-Party Computation and Threshold Cryptography Peer-to-peer Security PKIs Public-Key and Hybrid Encryption Quantum Cryptography Risks of using Computers Robust Networks Secret Sharing Secure Electronic Commerce Software Obfuscation Stream Ciphers Trust Models Watermarking and Fingerprinting Special Issues. Current Call for Papers: Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf
期刊最新文献
Functional Message Authentication Codes With Message and Function Privacy Lattice-Based CP-ABE for Optimal Broadcast Encryption With Polynomial-Depth Circuits Full-Accessible Multiparty Searchable Encryption Scheme for Shared Cloud Storage A Trust Based Anomaly Detection Scheme Using a Hybrid Deep Learning Model for IoT Routing Attacks Mitigation A Comprehensive Investigation of Anomaly Detection Methods in Deep Learning and Machine Learning: 2019–2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1