{"title":"MF-RF:一种基于多特征和随机森林算法的改进共谋利益泛滥攻击检测方法","authors":"Meng Yue, Silin Peng, Wenzhi Feng","doi":"10.1049/ise2.12100","DOIUrl":null,"url":null,"abstract":"<p>A new type of Collusive Interest Flooding Attack (CIFA), Improved Collusive Interest Flooding Attack (I-CIFA), which originates from CIFA with a stronger concealment, higher attack effect, lower attack cost, and wider attack range in Named Data Networking (NDN). In order to detect this attack, the present study explores new detection features and establishes a sample set of attack features with different granularities, and accordingly, the Pearson coefficient is used to validate the correlation between the proposed features and the network states. Finally, the Random Forest model is designed to detect the I-CIFA attack. To evaluate the performance of the approach, extensive experiments are conducted in ndnSIM platform. Test results show that the proposed detection approach outperforms other existing approaches with a detection rate of 98.1%, error rate of 1.9%, and false positive rate of 1.5%.</p>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"17 3","pages":"360-376"},"PeriodicalIF":1.3000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2.12100","citationCount":"0","resultStr":"{\"title\":\"MF-RF: A detection approach based on multi-features and random forest algorithm for improved collusive interest flooding attack\",\"authors\":\"Meng Yue, Silin Peng, Wenzhi Feng\",\"doi\":\"10.1049/ise2.12100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new type of Collusive Interest Flooding Attack (CIFA), Improved Collusive Interest Flooding Attack (I-CIFA), which originates from CIFA with a stronger concealment, higher attack effect, lower attack cost, and wider attack range in Named Data Networking (NDN). In order to detect this attack, the present study explores new detection features and establishes a sample set of attack features with different granularities, and accordingly, the Pearson coefficient is used to validate the correlation between the proposed features and the network states. Finally, the Random Forest model is designed to detect the I-CIFA attack. To evaluate the performance of the approach, extensive experiments are conducted in ndnSIM platform. Test results show that the proposed detection approach outperforms other existing approaches with a detection rate of 98.1%, error rate of 1.9%, and false positive rate of 1.5%.</p>\",\"PeriodicalId\":50380,\"journal\":{\"name\":\"IET Information Security\",\"volume\":\"17 3\",\"pages\":\"360-376\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2.12100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ise2.12100\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ise2.12100","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
MF-RF: A detection approach based on multi-features and random forest algorithm for improved collusive interest flooding attack
A new type of Collusive Interest Flooding Attack (CIFA), Improved Collusive Interest Flooding Attack (I-CIFA), which originates from CIFA with a stronger concealment, higher attack effect, lower attack cost, and wider attack range in Named Data Networking (NDN). In order to detect this attack, the present study explores new detection features and establishes a sample set of attack features with different granularities, and accordingly, the Pearson coefficient is used to validate the correlation between the proposed features and the network states. Finally, the Random Forest model is designed to detect the I-CIFA attack. To evaluate the performance of the approach, extensive experiments are conducted in ndnSIM platform. Test results show that the proposed detection approach outperforms other existing approaches with a detection rate of 98.1%, error rate of 1.9%, and false positive rate of 1.5%.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf