Dr. Zijie Zhang, Dr. Jiuxing Li, Ryan Amini, Alexandria Mansfield, Jimmy Gu, Jianrun Xia, Prof. John D. Brennan, Prof. Yingfu Li
{"title":"封面特征:用于识别多种严重急性呼吸系统综合征冠状病毒2变种刺突蛋白的多种DNA适体的比较表征(Anal.Sens.5/2023)","authors":"Dr. Zijie Zhang, Dr. Jiuxing Li, Ryan Amini, Alexandria Mansfield, Jimmy Gu, Jianrun Xia, Prof. John D. Brennan, Prof. Yingfu Li","doi":"10.1002/anse.202300029","DOIUrl":null,"url":null,"abstract":"<p><b>The cover image illustrates</b> the binding of a group of DNA aptamers selected to recognize the spike protein (S-protein) of SARS-CoV-2, the virus that causes COVID-19. The binding affinity for several key variants of the S-protein and the degree of overlapping of the binding sites of the aptamers on the S-protein have been comparatively examined. The design was created with Biorender.com. More information can be found in the Research Article by John D. Brennan, Yingfu Li, and co-workers.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":72192,"journal":{"name":"Analysis & sensing","volume":"3 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202300029","citationCount":"0","resultStr":"{\"title\":\"Cover Feature: Comparative Characterization of Diverse DNA Aptamers for Recognition of Spike Proteins of Multiple SARS-CoV-2 Variants (Anal. Sens. 5/2023)\",\"authors\":\"Dr. Zijie Zhang, Dr. Jiuxing Li, Ryan Amini, Alexandria Mansfield, Jimmy Gu, Jianrun Xia, Prof. John D. Brennan, Prof. Yingfu Li\",\"doi\":\"10.1002/anse.202300029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>The cover image illustrates</b> the binding of a group of DNA aptamers selected to recognize the spike protein (S-protein) of SARS-CoV-2, the virus that causes COVID-19. The binding affinity for several key variants of the S-protein and the degree of overlapping of the binding sites of the aptamers on the S-protein have been comparatively examined. The design was created with Biorender.com. More information can be found in the Research Article by John D. Brennan, Yingfu Li, and co-workers.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":72192,\"journal\":{\"name\":\"Analysis & sensing\",\"volume\":\"3 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anse.202300029\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anse.202300029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & sensing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anse.202300029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Cover Feature: Comparative Characterization of Diverse DNA Aptamers for Recognition of Spike Proteins of Multiple SARS-CoV-2 Variants (Anal. Sens. 5/2023)
The cover image illustrates the binding of a group of DNA aptamers selected to recognize the spike protein (S-protein) of SARS-CoV-2, the virus that causes COVID-19. The binding affinity for several key variants of the S-protein and the degree of overlapping of the binding sites of the aptamers on the S-protein have been comparatively examined. The design was created with Biorender.com. More information can be found in the Research Article by John D. Brennan, Yingfu Li, and co-workers.