Khue-Dung Dang, Louise M. Ryan, Tugba Akkaya Hocagil, Richard J. Cook, Gale A. Richardson, Nancy L. Day, Claire D. Coles, Heather Carmichael Olson, Sandra W. Jacobson, Joseph L. Jacobson
{"title":"基于多个队列数据的产前酒精暴露对儿童认知影响的贝叶斯建模","authors":"Khue-Dung Dang, Louise M. Ryan, Tugba Akkaya Hocagil, Richard J. Cook, Gale A. Richardson, Nancy L. Day, Claire D. Coles, Heather Carmichael Olson, Sandra W. Jacobson, Joseph L. Jacobson","doi":"10.1111/anzs.12397","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>High levels of prenatal alcohol exposure (PAE) result in significant cognitive deficits in children, but the exact nature of the dose-response relationship is less well understood. To investigate this relationship, data were assembled from six longitudinal birth cohort studies examining the effects of PAE on cognitive outcomes from early school age through adolescence. Structural equation models (SEMs) are a natural approach to consider, because of the way they conceptualise multiple observed outcomes as relating to an underlying latent variable of interest, which can then be modelled as a function of exposure and other predictors of interest. However, conventional SEMs could not be fitted in this context because slightly different outcome measures were used in the six studies. In this paper we propose a multi-group Bayesian SEM that maps the unobserved cognition variable to a broad range of observed outcomes. The relation between these variables and PAE is then examined while controlling for potential confounders via propensity score adjustment. By examining different possible dose-response functions, the proposed framework is used to investigate whether there is a threshold PAE level that results in minimal cognitive deficit.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"65 3","pages":"167-186"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian modelling of effects of prenatal alcohol exposure on child cognition based on data from multiple cohorts\",\"authors\":\"Khue-Dung Dang, Louise M. Ryan, Tugba Akkaya Hocagil, Richard J. Cook, Gale A. Richardson, Nancy L. Day, Claire D. Coles, Heather Carmichael Olson, Sandra W. Jacobson, Joseph L. Jacobson\",\"doi\":\"10.1111/anzs.12397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>High levels of prenatal alcohol exposure (PAE) result in significant cognitive deficits in children, but the exact nature of the dose-response relationship is less well understood. To investigate this relationship, data were assembled from six longitudinal birth cohort studies examining the effects of PAE on cognitive outcomes from early school age through adolescence. Structural equation models (SEMs) are a natural approach to consider, because of the way they conceptualise multiple observed outcomes as relating to an underlying latent variable of interest, which can then be modelled as a function of exposure and other predictors of interest. However, conventional SEMs could not be fitted in this context because slightly different outcome measures were used in the six studies. In this paper we propose a multi-group Bayesian SEM that maps the unobserved cognition variable to a broad range of observed outcomes. The relation between these variables and PAE is then examined while controlling for potential confounders via propensity score adjustment. By examining different possible dose-response functions, the proposed framework is used to investigate whether there is a threshold PAE level that results in minimal cognitive deficit.</p>\\n </div>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":\"65 3\",\"pages\":\"167-186\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12397\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12397","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Bayesian modelling of effects of prenatal alcohol exposure on child cognition based on data from multiple cohorts
High levels of prenatal alcohol exposure (PAE) result in significant cognitive deficits in children, but the exact nature of the dose-response relationship is less well understood. To investigate this relationship, data were assembled from six longitudinal birth cohort studies examining the effects of PAE on cognitive outcomes from early school age through adolescence. Structural equation models (SEMs) are a natural approach to consider, because of the way they conceptualise multiple observed outcomes as relating to an underlying latent variable of interest, which can then be modelled as a function of exposure and other predictors of interest. However, conventional SEMs could not be fitted in this context because slightly different outcome measures were used in the six studies. In this paper we propose a multi-group Bayesian SEM that maps the unobserved cognition variable to a broad range of observed outcomes. The relation between these variables and PAE is then examined while controlling for potential confounders via propensity score adjustment. By examining different possible dose-response functions, the proposed framework is used to investigate whether there is a threshold PAE level that results in minimal cognitive deficit.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.