{"title":"电容耦合霍尔型磁流体发电机的研制","authors":"Gaigo Kato, Kazumasa Takahashi, Takashi Kikuchi, Toru Sasaki","doi":"10.1002/eej.23440","DOIUrl":null,"url":null,"abstract":"<p>We have demonstrated a capacitively coupled Hall-type MHD generator using ECR plasma. To clarify the characteristics of the fabricated MHD generator, we measured the power generation characteristics as a function of magnetic field strength using a DC Hall-type MHD power generation experiment. The results showed that the output power decreased due to magnetic pressure at the higher magnetic field. However, the output power corresponded to the theoretical value at the lower magnetic field. An AC Hall-type MHD power generation experiment was conducted using an AC magnetic field. As a result, full-wave rectification voltage was observed as per theory. Finally, capacitively coupled Hall-type MHD power generation experiments were conducted, and full-wave rectified waveforms were observed as in AC Hall-type MHD power generation. These waveforms were similar to the output waveforms predicted from theory. These results show that the capacitively coupled Hall-type MHD generator is feasible.</p>","PeriodicalId":50550,"journal":{"name":"Electrical Engineering in Japan","volume":"216 3","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of capacitive-coupled hall-type MHD generator\",\"authors\":\"Gaigo Kato, Kazumasa Takahashi, Takashi Kikuchi, Toru Sasaki\",\"doi\":\"10.1002/eej.23440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We have demonstrated a capacitively coupled Hall-type MHD generator using ECR plasma. To clarify the characteristics of the fabricated MHD generator, we measured the power generation characteristics as a function of magnetic field strength using a DC Hall-type MHD power generation experiment. The results showed that the output power decreased due to magnetic pressure at the higher magnetic field. However, the output power corresponded to the theoretical value at the lower magnetic field. An AC Hall-type MHD power generation experiment was conducted using an AC magnetic field. As a result, full-wave rectification voltage was observed as per theory. Finally, capacitively coupled Hall-type MHD power generation experiments were conducted, and full-wave rectified waveforms were observed as in AC Hall-type MHD power generation. These waveforms were similar to the output waveforms predicted from theory. These results show that the capacitively coupled Hall-type MHD generator is feasible.</p>\",\"PeriodicalId\":50550,\"journal\":{\"name\":\"Electrical Engineering in Japan\",\"volume\":\"216 3\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Engineering in Japan\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eej.23440\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eej.23440","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Development of capacitive-coupled hall-type MHD generator
We have demonstrated a capacitively coupled Hall-type MHD generator using ECR plasma. To clarify the characteristics of the fabricated MHD generator, we measured the power generation characteristics as a function of magnetic field strength using a DC Hall-type MHD power generation experiment. The results showed that the output power decreased due to magnetic pressure at the higher magnetic field. However, the output power corresponded to the theoretical value at the lower magnetic field. An AC Hall-type MHD power generation experiment was conducted using an AC magnetic field. As a result, full-wave rectification voltage was observed as per theory. Finally, capacitively coupled Hall-type MHD power generation experiments were conducted, and full-wave rectified waveforms were observed as in AC Hall-type MHD power generation. These waveforms were similar to the output waveforms predicted from theory. These results show that the capacitively coupled Hall-type MHD generator is feasible.
期刊介绍:
Electrical Engineering in Japan (EEJ) is an official journal of the Institute of Electrical Engineers of Japan (IEEJ). This authoritative journal is a translation of the Transactions of the Institute of Electrical Engineers of Japan. It publishes 16 issues a year on original research findings in Electrical Engineering with special focus on the science, technology and applications of electric power, such as power generation, transmission and conversion, electric railways (including magnetic levitation devices), motors, switching, power economics.