{"title":"一种增强的基于深度学习的网络钓鱼检测机制,使用可变自动编码器有效识别恶意URL","authors":"Manoj Kumar Prabakaran, Parvathy Meenakshi Sundaram, Abinaya Devi Chandrasekar","doi":"10.1049/ise2.12106","DOIUrl":null,"url":null,"abstract":"<p>Phishing attacks have become one of the powerful sources for cyber criminals to impose various forms of security attacks in which fake website Uniform Resource Locators (URL) are circulated around the Internet community in the form of email, messages etc., in order to deceive users, resulting in the loss of their valuable assets. The phishing URLs are predicted using several blacklist-based traditional phishing website detection techniques. However, numerous phishing websites are frequently constructed and launched on the Internet over time; these blacklist-based traditional methods do not accurately predict most phishing websites. In order to effectively identify malicious URLs, an enhanced deep learning-based phishing detection approach has been proposed by integrating the strength of Variational Autoencoders (VAE) and deep neural networks (DNN). In the proposed framework, the inherent features of a raw URL are automatically extracted by the VAE model by reconstructing the original input URL to enhance phishing URL detection. For experimentation, around 1 lakh URLs were crawled from two publicly available datasets, namely ISCX-URL-2016 dataset and Kaggle dataset. The experimental results suggested that the proposed model has reached a maximum accuracy of 97.45% and exhibits a quicker response time of 1.9 s, which is better when compared to all the other experimented models.</p>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"17 3","pages":"423-440"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2.12106","citationCount":"5","resultStr":"{\"title\":\"An enhanced deep learning-based phishing detection mechanism to effectively identify malicious URLs using variational autoencoders\",\"authors\":\"Manoj Kumar Prabakaran, Parvathy Meenakshi Sundaram, Abinaya Devi Chandrasekar\",\"doi\":\"10.1049/ise2.12106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phishing attacks have become one of the powerful sources for cyber criminals to impose various forms of security attacks in which fake website Uniform Resource Locators (URL) are circulated around the Internet community in the form of email, messages etc., in order to deceive users, resulting in the loss of their valuable assets. The phishing URLs are predicted using several blacklist-based traditional phishing website detection techniques. However, numerous phishing websites are frequently constructed and launched on the Internet over time; these blacklist-based traditional methods do not accurately predict most phishing websites. In order to effectively identify malicious URLs, an enhanced deep learning-based phishing detection approach has been proposed by integrating the strength of Variational Autoencoders (VAE) and deep neural networks (DNN). In the proposed framework, the inherent features of a raw URL are automatically extracted by the VAE model by reconstructing the original input URL to enhance phishing URL detection. For experimentation, around 1 lakh URLs were crawled from two publicly available datasets, namely ISCX-URL-2016 dataset and Kaggle dataset. The experimental results suggested that the proposed model has reached a maximum accuracy of 97.45% and exhibits a quicker response time of 1.9 s, which is better when compared to all the other experimented models.</p>\",\"PeriodicalId\":50380,\"journal\":{\"name\":\"IET Information Security\",\"volume\":\"17 3\",\"pages\":\"423-440\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ise2.12106\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ise2.12106\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ise2.12106","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
An enhanced deep learning-based phishing detection mechanism to effectively identify malicious URLs using variational autoencoders
Phishing attacks have become one of the powerful sources for cyber criminals to impose various forms of security attacks in which fake website Uniform Resource Locators (URL) are circulated around the Internet community in the form of email, messages etc., in order to deceive users, resulting in the loss of their valuable assets. The phishing URLs are predicted using several blacklist-based traditional phishing website detection techniques. However, numerous phishing websites are frequently constructed and launched on the Internet over time; these blacklist-based traditional methods do not accurately predict most phishing websites. In order to effectively identify malicious URLs, an enhanced deep learning-based phishing detection approach has been proposed by integrating the strength of Variational Autoencoders (VAE) and deep neural networks (DNN). In the proposed framework, the inherent features of a raw URL are automatically extracted by the VAE model by reconstructing the original input URL to enhance phishing URL detection. For experimentation, around 1 lakh URLs were crawled from two publicly available datasets, namely ISCX-URL-2016 dataset and Kaggle dataset. The experimental results suggested that the proposed model has reached a maximum accuracy of 97.45% and exhibits a quicker response time of 1.9 s, which is better when compared to all the other experimented models.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf