{"title":"构建有意义的bug修复补丁来修复软件缺陷","authors":"Hui Li, Yong Liu, Xuexin Qi, Xi Yu, Shikai Guo","doi":"10.1049/sfw2.12140","DOIUrl":null,"url":null,"abstract":"<p>Currently, software projects require a significant amount of time, effort and other resources to be invested in software testing to reduce the number of code defects. However, this process decreases the efficiency of software development and leads to a significant waste of workforce and resources. To address this challenge, researchers developed various solutions utilising deep neural networks. However, these solutions are frequently challenged by issues, such as a vast vocabulary, network training difficulties and elongated training processes resulting from the handling of redundant information. To overcome these limitations, the authors proposed a new neural network-based model named HopFix, designed to detect software defects that may be introduced during the coding process. HopFix consists of four parts: data preprocessing, encoder, decoder and code generation components, which were used for preprocessing data, extracting information about software defects, analysing defect information, generating software patches and controlling the generation process of software patches, respectively. Experimental studies on Bug-Fix Pairs (BFP) show that HopFix correctly fixed 47.2% (<i>BFP</i><sub><i>small</i></sub> datasets) and 25.7% (<i>BFP</i><sub><i>medium</i></sub> datasets) of software defects.</p>","PeriodicalId":50378,"journal":{"name":"IET Software","volume":"17 4","pages":"566-581"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sfw2.12140","citationCount":"0","resultStr":"{\"title\":\"Structuring meaningful bug-fixing patches to fix software defect\",\"authors\":\"Hui Li, Yong Liu, Xuexin Qi, Xi Yu, Shikai Guo\",\"doi\":\"10.1049/sfw2.12140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Currently, software projects require a significant amount of time, effort and other resources to be invested in software testing to reduce the number of code defects. However, this process decreases the efficiency of software development and leads to a significant waste of workforce and resources. To address this challenge, researchers developed various solutions utilising deep neural networks. However, these solutions are frequently challenged by issues, such as a vast vocabulary, network training difficulties and elongated training processes resulting from the handling of redundant information. To overcome these limitations, the authors proposed a new neural network-based model named HopFix, designed to detect software defects that may be introduced during the coding process. HopFix consists of four parts: data preprocessing, encoder, decoder and code generation components, which were used for preprocessing data, extracting information about software defects, analysing defect information, generating software patches and controlling the generation process of software patches, respectively. Experimental studies on Bug-Fix Pairs (BFP) show that HopFix correctly fixed 47.2% (<i>BFP</i><sub><i>small</i></sub> datasets) and 25.7% (<i>BFP</i><sub><i>medium</i></sub> datasets) of software defects.</p>\",\"PeriodicalId\":50378,\"journal\":{\"name\":\"IET Software\",\"volume\":\"17 4\",\"pages\":\"566-581\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sfw2.12140\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/sfw2.12140\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Software","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sfw2.12140","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Structuring meaningful bug-fixing patches to fix software defect
Currently, software projects require a significant amount of time, effort and other resources to be invested in software testing to reduce the number of code defects. However, this process decreases the efficiency of software development and leads to a significant waste of workforce and resources. To address this challenge, researchers developed various solutions utilising deep neural networks. However, these solutions are frequently challenged by issues, such as a vast vocabulary, network training difficulties and elongated training processes resulting from the handling of redundant information. To overcome these limitations, the authors proposed a new neural network-based model named HopFix, designed to detect software defects that may be introduced during the coding process. HopFix consists of four parts: data preprocessing, encoder, decoder and code generation components, which were used for preprocessing data, extracting information about software defects, analysing defect information, generating software patches and controlling the generation process of software patches, respectively. Experimental studies on Bug-Fix Pairs (BFP) show that HopFix correctly fixed 47.2% (BFPsmall datasets) and 25.7% (BFPmedium datasets) of software defects.
期刊介绍:
IET Software publishes papers on all aspects of the software lifecycle, including design, development, implementation and maintenance. The focus of the journal is on the methods used to develop and maintain software, and their practical application.
Authors are especially encouraged to submit papers on the following topics, although papers on all aspects of software engineering are welcome:
Software and systems requirements engineering
Formal methods, design methods, practice and experience
Software architecture, aspect and object orientation, reuse and re-engineering
Testing, verification and validation techniques
Software dependability and measurement
Human systems engineering and human-computer interaction
Knowledge engineering; expert and knowledge-based systems, intelligent agents
Information systems engineering
Application of software engineering in industry and commerce
Software engineering technology transfer
Management of software development
Theoretical aspects of software development
Machine learning
Big data and big code
Cloud computing
Current Special Issue. Call for papers:
Knowledge Discovery for Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_KDSD.pdf
Big Data Analytics for Sustainable Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_BDASSD.pdf