用于疾病分类的多分支可持续卷积神经网络

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Imaging Systems and Technology Pub Date : 2023-04-13 DOI:10.1002/ima.22884
Maria Naz, Munam Ali Shah, Hasan Ali Khattak, Abdul Wahid, Muhammad Nabeel Asghar, Hafiz Tayyab Rauf, Muhammad Attique Khan, Zoobia Ameer
{"title":"用于疾病分类的多分支可持续卷积神经网络","authors":"Maria Naz,&nbsp;Munam Ali Shah,&nbsp;Hasan Ali Khattak,&nbsp;Abdul Wahid,&nbsp;Muhammad Nabeel Asghar,&nbsp;Hafiz Tayyab Rauf,&nbsp;Muhammad Attique Khan,&nbsp;Zoobia Ameer","doi":"10.1002/ima.22884","DOIUrl":null,"url":null,"abstract":"<p>Pandemic and natural disasters are growing more often, imposing even more pressure on life care services and users. There are knowledge gaps regarding how to prevent disasters and pandemics. In recent years, after heart disease, corona virus disease-19 (COVID-19), brain stroke, and cancer are at their peak. Different machine learning and deep learning-based techniques are presented to detect these diseases. Existing technique uses two branches that have been used for detection and prediction of disease accurately such as brain hemorrhage. However, existing techniques have been focused on the detection of specific diseases with double-branches convolutional neural networks (CNNs). There is a need to develop a model to detect multiple diseases at the same time using computerized tomography (CT) scan images. We proposed a model that consists of 12 branches of CNN to detect the different types of diseases with their subtypes using CT scan images and classify them more accurately. We proposed multi-branch sustainable CNN model with deep learning architecture trained on the brain CT hemorrhage, COVID-19 lung CT scans and chest CT scans with subtypes of lung cancers. Feature extracted automatically from preprocessed input data and passed to classifiers for classification in the form of concatenated feature vectors. Six classifiers support vector machine (SVM), decision tree (DT), K-nearest neighbor (K-NN), artificial neural network (ANN), naïve Bayes (NB), linear regression (LR) classifiers, and three ensembles the random forest (RF), AdaBoost, gradient boosting ensembles were tested on our model for classification and prediction. Our model achieved the best results on RF on each dataset. Respectively, on brain CT hemorrhage achieved (99.79%) accuracy, on COVID-19 lung CT scans achieved (97.61%), and on chest CT scans dataset achieved (98.77%).</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"33 5","pages":"1621-1633"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-branch sustainable convolutional neural network for disease classification\",\"authors\":\"Maria Naz,&nbsp;Munam Ali Shah,&nbsp;Hasan Ali Khattak,&nbsp;Abdul Wahid,&nbsp;Muhammad Nabeel Asghar,&nbsp;Hafiz Tayyab Rauf,&nbsp;Muhammad Attique Khan,&nbsp;Zoobia Ameer\",\"doi\":\"10.1002/ima.22884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pandemic and natural disasters are growing more often, imposing even more pressure on life care services and users. There are knowledge gaps regarding how to prevent disasters and pandemics. In recent years, after heart disease, corona virus disease-19 (COVID-19), brain stroke, and cancer are at their peak. Different machine learning and deep learning-based techniques are presented to detect these diseases. Existing technique uses two branches that have been used for detection and prediction of disease accurately such as brain hemorrhage. However, existing techniques have been focused on the detection of specific diseases with double-branches convolutional neural networks (CNNs). There is a need to develop a model to detect multiple diseases at the same time using computerized tomography (CT) scan images. We proposed a model that consists of 12 branches of CNN to detect the different types of diseases with their subtypes using CT scan images and classify them more accurately. We proposed multi-branch sustainable CNN model with deep learning architecture trained on the brain CT hemorrhage, COVID-19 lung CT scans and chest CT scans with subtypes of lung cancers. Feature extracted automatically from preprocessed input data and passed to classifiers for classification in the form of concatenated feature vectors. Six classifiers support vector machine (SVM), decision tree (DT), K-nearest neighbor (K-NN), artificial neural network (ANN), naïve Bayes (NB), linear regression (LR) classifiers, and three ensembles the random forest (RF), AdaBoost, gradient boosting ensembles were tested on our model for classification and prediction. Our model achieved the best results on RF on each dataset. Respectively, on brain CT hemorrhage achieved (99.79%) accuracy, on COVID-19 lung CT scans achieved (97.61%), and on chest CT scans dataset achieved (98.77%).</p>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"33 5\",\"pages\":\"1621-1633\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.22884\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.22884","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

流行病和自然灾害越来越频繁,给生命护理服务和用户带来了更大的压力。在如何预防灾害和流行病方面存在知识差距。近年来,继心脏病之后,冠状病毒病-19(新冠肺炎)、脑卒中和癌症正处于高峰期。提出了不同的基于机器学习和深度学习的技术来检测这些疾病。现有技术使用两个分支,这两个分支已用于准确检测和预测疾病,如脑出血。然而,现有技术主要集中在利用双分支卷积神经网络(CNNs)检测特定疾病上。需要开发一种使用计算机断层扫描(CT)扫描图像同时检测多种疾病的模型。我们提出了一个由CNN的12个分支组成的模型,以使用CT扫描图像检测不同类型的疾病及其亚型,并更准确地对其进行分类。我们提出了具有深度学习架构的多分支可持续CNN模型,该模型针对脑CT出血、新冠肺炎肺部CT扫描和肺癌亚型的胸部CT扫描进行了训练。从预处理后的输入数据中自动提取特征,并以级联特征向量的形式传递给分类器进行分类。在我们的模型上测试了六个分类器——支持向量机(SVM)、决策树(DT)、K-近邻(K-NN)、人工神经网络(ANN)、朴素贝叶斯(NB)、线性回归(LR)分类器和三个集成——随机森林(RF)、AdaBoost、梯度增强集成——用于分类和预测。我们的模型在每个数据集的RF上都取得了最好的结果。脑CT出血准确率分别为99.79%、新冠肺炎肺CT扫描准确率为97.61%和胸部CT扫描数据集准确率为98.77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-branch sustainable convolutional neural network for disease classification

Pandemic and natural disasters are growing more often, imposing even more pressure on life care services and users. There are knowledge gaps regarding how to prevent disasters and pandemics. In recent years, after heart disease, corona virus disease-19 (COVID-19), brain stroke, and cancer are at their peak. Different machine learning and deep learning-based techniques are presented to detect these diseases. Existing technique uses two branches that have been used for detection and prediction of disease accurately such as brain hemorrhage. However, existing techniques have been focused on the detection of specific diseases with double-branches convolutional neural networks (CNNs). There is a need to develop a model to detect multiple diseases at the same time using computerized tomography (CT) scan images. We proposed a model that consists of 12 branches of CNN to detect the different types of diseases with their subtypes using CT scan images and classify them more accurately. We proposed multi-branch sustainable CNN model with deep learning architecture trained on the brain CT hemorrhage, COVID-19 lung CT scans and chest CT scans with subtypes of lung cancers. Feature extracted automatically from preprocessed input data and passed to classifiers for classification in the form of concatenated feature vectors. Six classifiers support vector machine (SVM), decision tree (DT), K-nearest neighbor (K-NN), artificial neural network (ANN), naïve Bayes (NB), linear regression (LR) classifiers, and three ensembles the random forest (RF), AdaBoost, gradient boosting ensembles were tested on our model for classification and prediction. Our model achieved the best results on RF on each dataset. Respectively, on brain CT hemorrhage achieved (99.79%) accuracy, on COVID-19 lung CT scans achieved (97.61%), and on chest CT scans dataset achieved (98.77%).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
期刊最新文献
Predicting the Early Detection of Breast Cancer Using Hybrid Machine Learning Systems and Thermographic Imaging CATNet: A Cross Attention and Texture-Aware Network for Polyp Segmentation VMC-UNet: A Vision Mamba-CNN U-Net for Tumor Segmentation in Breast Ultrasound Image Suppression of the Tissue Component With the Total Least-Squares Algorithm to Improve Second Harmonic Imaging of Ultrasound Contrast Agents Segmentation and Classification of Breast Masses From the Whole Mammography Images Using Transfer Learning and BI-RADS Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1