Santiago del Rey, Silverio Martínez-Fernández, Antonio Salmerón
{"title":"用于数据驱动软件维护的软件日志的贝叶斯网络分析","authors":"Santiago del Rey, Silverio Martínez-Fernández, Antonio Salmerón","doi":"10.1049/sfw2.12121","DOIUrl":null,"url":null,"abstract":"<p>Software organisations aim to develop and maintain high-quality software systems. Due to large amounts of behaviour data available, software organisations can conduct data-driven software maintenance. Indeed, software quality assurance and improvement programs have attracted many researchers' attention. Bayesian Networks (BNs) are proposed as a log analysis technique to discover poor performance indicators in a system and to explore usage patterns that usually require temporal analysis. For this, an action research study is designed and conducted to improve the software quality and the user experience of a web application using BNs as a technique to analyse software logs. To this aim, three models with BNs are created. As a result, multiple enhancement points have been identified within the application ranging from performance issues and errors to recurring user usage patterns. These enhancement points enable the creation of cards in the Scrum process of the web application, contributing to its data-driven software maintenance. Finally, the authors consider that BNs within quality-aware and data-driven software maintenance have great potential as a software log analysis technique and encourage the community to deepen its possible applications. For this, the applied methodology and a replication package are shared.</p>","PeriodicalId":50378,"journal":{"name":"IET Software","volume":"17 3","pages":"268-286"},"PeriodicalIF":1.5000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sfw2.12121","citationCount":"0","resultStr":"{\"title\":\"Bayesian Network analysis of software logs for data-driven software maintenance\",\"authors\":\"Santiago del Rey, Silverio Martínez-Fernández, Antonio Salmerón\",\"doi\":\"10.1049/sfw2.12121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Software organisations aim to develop and maintain high-quality software systems. Due to large amounts of behaviour data available, software organisations can conduct data-driven software maintenance. Indeed, software quality assurance and improvement programs have attracted many researchers' attention. Bayesian Networks (BNs) are proposed as a log analysis technique to discover poor performance indicators in a system and to explore usage patterns that usually require temporal analysis. For this, an action research study is designed and conducted to improve the software quality and the user experience of a web application using BNs as a technique to analyse software logs. To this aim, three models with BNs are created. As a result, multiple enhancement points have been identified within the application ranging from performance issues and errors to recurring user usage patterns. These enhancement points enable the creation of cards in the Scrum process of the web application, contributing to its data-driven software maintenance. Finally, the authors consider that BNs within quality-aware and data-driven software maintenance have great potential as a software log analysis technique and encourage the community to deepen its possible applications. For this, the applied methodology and a replication package are shared.</p>\",\"PeriodicalId\":50378,\"journal\":{\"name\":\"IET Software\",\"volume\":\"17 3\",\"pages\":\"268-286\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sfw2.12121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/sfw2.12121\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Software","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sfw2.12121","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Bayesian Network analysis of software logs for data-driven software maintenance
Software organisations aim to develop and maintain high-quality software systems. Due to large amounts of behaviour data available, software organisations can conduct data-driven software maintenance. Indeed, software quality assurance and improvement programs have attracted many researchers' attention. Bayesian Networks (BNs) are proposed as a log analysis technique to discover poor performance indicators in a system and to explore usage patterns that usually require temporal analysis. For this, an action research study is designed and conducted to improve the software quality and the user experience of a web application using BNs as a technique to analyse software logs. To this aim, three models with BNs are created. As a result, multiple enhancement points have been identified within the application ranging from performance issues and errors to recurring user usage patterns. These enhancement points enable the creation of cards in the Scrum process of the web application, contributing to its data-driven software maintenance. Finally, the authors consider that BNs within quality-aware and data-driven software maintenance have great potential as a software log analysis technique and encourage the community to deepen its possible applications. For this, the applied methodology and a replication package are shared.
期刊介绍:
IET Software publishes papers on all aspects of the software lifecycle, including design, development, implementation and maintenance. The focus of the journal is on the methods used to develop and maintain software, and their practical application.
Authors are especially encouraged to submit papers on the following topics, although papers on all aspects of software engineering are welcome:
Software and systems requirements engineering
Formal methods, design methods, practice and experience
Software architecture, aspect and object orientation, reuse and re-engineering
Testing, verification and validation techniques
Software dependability and measurement
Human systems engineering and human-computer interaction
Knowledge engineering; expert and knowledge-based systems, intelligent agents
Information systems engineering
Application of software engineering in industry and commerce
Software engineering technology transfer
Management of software development
Theoretical aspects of software development
Machine learning
Big data and big code
Cloud computing
Current Special Issue. Call for papers:
Knowledge Discovery for Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_KDSD.pdf
Big Data Analytics for Sustainable Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_BDASSD.pdf