表面活性剂在碳纳米管分散和分选中的作用和影响

IF 1.6 4区 工程技术 Q3 CHEMISTRY, APPLIED Journal of Surfactants and Detergents Pub Date : 2023-08-07 DOI:10.1002/jsde.12702
HeeBong Yang, Luke Neal, Elijah Earl Flores, Alex Adronov, Na Young Kim
{"title":"表面活性剂在碳纳米管分散和分选中的作用和影响","authors":"HeeBong Yang,&nbsp;Luke Neal,&nbsp;Elijah Earl Flores,&nbsp;Alex Adronov,&nbsp;Na Young Kim","doi":"10.1002/jsde.12702","DOIUrl":null,"url":null,"abstract":"<p>Carbon nanotubes (CNTs) are proving to be versatile nanomaterials that exhibit superior and attractive electrical, optical, chemical, physical, and mechanical properties. Different kinds of CNTs exist, and their associated properties have been actively explored and widely exploited from fundamental studies to practical applications. Obtaining high-quality CNTs in large volumes is desirable, especially for scalable electronic, photonic, chemical, and mechanical systems. At present, abundant but random CNTs are synthesized by various growth methods including arc discharge, chemical vapor deposition, and molecular beam epitaxy. An economical way to secure pristine CNTs is to disperse the raw soot of CNTs in solutions, from which purified CNTs are collected via sorting methods. Individual CNTs are generally hydrophobic, not readily soluble, requiring an agent, known as a surfactant to facilitate effective dispersions. Furthermore, the combination of surfactants, polymers, DNA, and other additives can enhance the purity of specific types of CNTs in confidence dispersions. With highly-pure CNTs, designated functional devices are built to demonstrate improved performance. This review surveys and highlights the essential roles and significant impacts of surfactants in dispersing and sorting CNTs.</p>","PeriodicalId":17083,"journal":{"name":"Journal of Surfactants and Detergents","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jsde.12702","citationCount":"1","resultStr":"{\"title\":\"Role and impact of surfactants in carbon nanotube dispersions and sorting\",\"authors\":\"HeeBong Yang,&nbsp;Luke Neal,&nbsp;Elijah Earl Flores,&nbsp;Alex Adronov,&nbsp;Na Young Kim\",\"doi\":\"10.1002/jsde.12702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbon nanotubes (CNTs) are proving to be versatile nanomaterials that exhibit superior and attractive electrical, optical, chemical, physical, and mechanical properties. Different kinds of CNTs exist, and their associated properties have been actively explored and widely exploited from fundamental studies to practical applications. Obtaining high-quality CNTs in large volumes is desirable, especially for scalable electronic, photonic, chemical, and mechanical systems. At present, abundant but random CNTs are synthesized by various growth methods including arc discharge, chemical vapor deposition, and molecular beam epitaxy. An economical way to secure pristine CNTs is to disperse the raw soot of CNTs in solutions, from which purified CNTs are collected via sorting methods. Individual CNTs are generally hydrophobic, not readily soluble, requiring an agent, known as a surfactant to facilitate effective dispersions. Furthermore, the combination of surfactants, polymers, DNA, and other additives can enhance the purity of specific types of CNTs in confidence dispersions. With highly-pure CNTs, designated functional devices are built to demonstrate improved performance. This review surveys and highlights the essential roles and significant impacts of surfactants in dispersing and sorting CNTs.</p>\",\"PeriodicalId\":17083,\"journal\":{\"name\":\"Journal of Surfactants and Detergents\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jsde.12702\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surfactants and Detergents\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jsde.12702\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surfactants and Detergents","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsde.12702","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

碳纳米管(CNTs)被证明是一种多用途的纳米材料,具有优异的电学、光学、化学、物理和机械性能。存在不同种类的碳纳米管,从基础研究到实际应用,它们的相关性能得到了积极探索和广泛开发。获得大体积的高质量CNT是可取的,特别是对于可扩展的电子、光子、化学和机械系统。目前,通过电弧放电、化学气相沉积和分子束外延等多种生长方法合成了丰富但无规的碳纳米管。确保原始CNT的一种经济的方法是将CNT的原始烟灰分散在溶液中,通过分选方法从溶液中收集纯化的CNT。单个CNT通常是疏水性的,不易溶解,需要一种称为表面活性剂的试剂来促进有效的分散。此外,表面活性剂、聚合物、DNA和其他添加剂的组合可以提高置信分散体中特定类型CNT的纯度。使用高纯CNT,可以构建指定的功能器件来展示改进的性能。这篇综述综述并强调了表面活性剂在分散和分选CNT中的重要作用和重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role and impact of surfactants in carbon nanotube dispersions and sorting

Carbon nanotubes (CNTs) are proving to be versatile nanomaterials that exhibit superior and attractive electrical, optical, chemical, physical, and mechanical properties. Different kinds of CNTs exist, and their associated properties have been actively explored and widely exploited from fundamental studies to practical applications. Obtaining high-quality CNTs in large volumes is desirable, especially for scalable electronic, photonic, chemical, and mechanical systems. At present, abundant but random CNTs are synthesized by various growth methods including arc discharge, chemical vapor deposition, and molecular beam epitaxy. An economical way to secure pristine CNTs is to disperse the raw soot of CNTs in solutions, from which purified CNTs are collected via sorting methods. Individual CNTs are generally hydrophobic, not readily soluble, requiring an agent, known as a surfactant to facilitate effective dispersions. Furthermore, the combination of surfactants, polymers, DNA, and other additives can enhance the purity of specific types of CNTs in confidence dispersions. With highly-pure CNTs, designated functional devices are built to demonstrate improved performance. This review surveys and highlights the essential roles and significant impacts of surfactants in dispersing and sorting CNTs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Surfactants and Detergents
Journal of Surfactants and Detergents 工程技术-工程:化工
CiteScore
3.80
自引率
6.20%
发文量
68
审稿时长
4 months
期刊介绍: Journal of Surfactants and Detergents, a journal of the American Oil Chemists’ Society (AOCS) publishes scientific contributions in the surfactants and detergents area. This includes the basic and applied science of petrochemical and oleochemical surfactants, the development and performance of surfactants in all applications, as well as the development and manufacture of detergent ingredients and their formulation into finished products.
期刊最新文献
Issue Information Cloning, purification, and functional characterization of recombinant pullulanase from Bacillus cereusATCC 14579 for improved detergent performance Special Issue: Glycolipid biosurfactants: Synthesis, properties, and applications Synthesis and properties of sodium stearyl polyoxypropylene acetates Study on the Pickering emulsions stabilized by SiO2 nanoparticles for enhanced oil recovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1