基于智能手机传感器的基于特征选择和深度决策融合的人类活动识别

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Cyber-Physical Systems: Theory and Applications Pub Date : 2023-01-11 DOI:10.1049/cps2.12045
Yijia Zhang, Xiaolan Yao, Qing Fei, Zhen Chen
{"title":"基于智能手机传感器的基于特征选择和深度决策融合的人类活动识别","authors":"Yijia Zhang,&nbsp;Xiaolan Yao,&nbsp;Qing Fei,&nbsp;Zhen Chen","doi":"10.1049/cps2.12045","DOIUrl":null,"url":null,"abstract":"<p>Human activity recognition (HAR) with smartphone sensors is a significant research direction in human-cyber-physical systems. Aiming at the problem of feature redundancy and low recognition accuracy of HAR, this paper presents a novel system architecture comprising three parts: feature selection based on an oppositional and chaos particle swarm optimization (OCPSO) algorithm, multi-input one-dimensional convolutional neural network (MI-1D-CNN) utilizing time-domain and frequency-domain signals, and deep decision fusion (DDF) combining D-S evidence theory and entropy. The proposed architecture is evaluated on the UCI HAR and WIDSM datasets. The results highlight that OCPSO performs better than particle swarm optimization (PSO) in feature selection, convergence speed, and recognition accuracy. Moreover, it is shown that for the MI-1D-CNN classifier, the frequency-domain signals (95.96%) perform better than time-domain signals (95.66%). In addition, this paper investigates the impact of the convolution layers, feature maps, filter sizes, and decision fusion methods on recognition accuracy. The results demonstrate that the DDF method (97.81%) outperforms single-layer decision fusion in improving the recognition accuracy on the UCI HAR dataset.</p>","PeriodicalId":36881,"journal":{"name":"IET Cyber-Physical Systems: Theory and Applications","volume":"8 2","pages":"76-90"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cps2.12045","citationCount":"3","resultStr":"{\"title\":\"Smartphone sensors-based human activity recognition using feature selection and deep decision fusion\",\"authors\":\"Yijia Zhang,&nbsp;Xiaolan Yao,&nbsp;Qing Fei,&nbsp;Zhen Chen\",\"doi\":\"10.1049/cps2.12045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human activity recognition (HAR) with smartphone sensors is a significant research direction in human-cyber-physical systems. Aiming at the problem of feature redundancy and low recognition accuracy of HAR, this paper presents a novel system architecture comprising three parts: feature selection based on an oppositional and chaos particle swarm optimization (OCPSO) algorithm, multi-input one-dimensional convolutional neural network (MI-1D-CNN) utilizing time-domain and frequency-domain signals, and deep decision fusion (DDF) combining D-S evidence theory and entropy. The proposed architecture is evaluated on the UCI HAR and WIDSM datasets. The results highlight that OCPSO performs better than particle swarm optimization (PSO) in feature selection, convergence speed, and recognition accuracy. Moreover, it is shown that for the MI-1D-CNN classifier, the frequency-domain signals (95.96%) perform better than time-domain signals (95.66%). In addition, this paper investigates the impact of the convolution layers, feature maps, filter sizes, and decision fusion methods on recognition accuracy. The results demonstrate that the DDF method (97.81%) outperforms single-layer decision fusion in improving the recognition accuracy on the UCI HAR dataset.</p>\",\"PeriodicalId\":36881,\"journal\":{\"name\":\"IET Cyber-Physical Systems: Theory and Applications\",\"volume\":\"8 2\",\"pages\":\"76-90\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cps2.12045\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cyber-Physical Systems: Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cps2.12045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cyber-Physical Systems: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cps2.12045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3

摘要

基于智能手机传感器的人类活动识别(HAR)是人类网络物理系统的一个重要研究方向。针对HAR的特征冗余和识别精度低的问题,本文提出了一种新的系统架构,包括三个部分:基于对立混沌粒子群优化算法的特征选择、利用时域和频域信号的多输入一维卷积神经网络(MI-1D-CNN),以及结合D-S证据理论和熵的深度决策融合(DDF)。在UCI HAR和WIDSM数据集上对所提出的体系结构进行了评估。结果表明,OCPSO在特征选择、收敛速度和识别精度方面优于粒子群优化算法。此外,对于MI-1D-CNN分类器,频域信号(95.96%)的性能优于时域信号(95.66%)。此外,本文还研究了卷积层、特征图、滤波器大小和决策融合方法对识别精度的影响。结果表明,在UCI HAR数据集上,DDF方法(97.81%)在提高识别精度方面优于单层决策融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smartphone sensors-based human activity recognition using feature selection and deep decision fusion

Human activity recognition (HAR) with smartphone sensors is a significant research direction in human-cyber-physical systems. Aiming at the problem of feature redundancy and low recognition accuracy of HAR, this paper presents a novel system architecture comprising three parts: feature selection based on an oppositional and chaos particle swarm optimization (OCPSO) algorithm, multi-input one-dimensional convolutional neural network (MI-1D-CNN) utilizing time-domain and frequency-domain signals, and deep decision fusion (DDF) combining D-S evidence theory and entropy. The proposed architecture is evaluated on the UCI HAR and WIDSM datasets. The results highlight that OCPSO performs better than particle swarm optimization (PSO) in feature selection, convergence speed, and recognition accuracy. Moreover, it is shown that for the MI-1D-CNN classifier, the frequency-domain signals (95.96%) perform better than time-domain signals (95.66%). In addition, this paper investigates the impact of the convolution layers, feature maps, filter sizes, and decision fusion methods on recognition accuracy. The results demonstrate that the DDF method (97.81%) outperforms single-layer decision fusion in improving the recognition accuracy on the UCI HAR dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Cyber-Physical Systems: Theory and Applications
IET Cyber-Physical Systems: Theory and Applications Computer Science-Computer Networks and Communications
CiteScore
5.40
自引率
6.70%
发文量
17
审稿时长
19 weeks
期刊最新文献
Guest Editorial: IoT-based secure health monitoring and tracking through estimated computing SEIR-driven semantic integration framework: Internet of Things-enhanced epidemiological surveillance in COVID-19 outbreaks using recurrent neural networks A machine learning model for Alzheimer's disease prediction Securing the Internet of Medical Things with ECG-based PUF encryption Status, challenges, and promises of data-driven battery lifetime prediction under cyber-physical system context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1