{"title":"4010NA/氢化丁腈/丁腈橡胶复合材料阻尼老化性能的分子模拟与实验研究","authors":"Meng Song, Meng Wang, Chaole Wang, Jihong Song, Yunan Li, Fengyi Cao, Guomin Yu, Qi Qin","doi":"10.1002/mats.202370003","DOIUrl":null,"url":null,"abstract":"<p><b>Front Cover</b>: The effects of 4010NA content on the damping and aging properties of hydrogenated nitrile butadiene rubber (HNBR)/nitrile butadiene rubber (NBR) matrix are studied via molecular simulation and experiments. With an increase in the 4010NA content, there is a decrease in the free volume fraction (FFV), attributed to the hydrogen bond network between 4010NA and the HNBR/NBR matrix. This is reported by Meng Song, Qi Qin, and co-workers in article number 2200072.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"32 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202370003","citationCount":"0","resultStr":"{\"title\":\"Molecular Simulation and Experimental Study on the Damping and Aging Properties of 4010NA/Hydrogenated Nitrile Butadiene/Nitrile Butadiene Rubber Composites\",\"authors\":\"Meng Song, Meng Wang, Chaole Wang, Jihong Song, Yunan Li, Fengyi Cao, Guomin Yu, Qi Qin\",\"doi\":\"10.1002/mats.202370003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Front Cover</b>: The effects of 4010NA content on the damping and aging properties of hydrogenated nitrile butadiene rubber (HNBR)/nitrile butadiene rubber (NBR) matrix are studied via molecular simulation and experiments. With an increase in the 4010NA content, there is a decrease in the free volume fraction (FFV), attributed to the hydrogen bond network between 4010NA and the HNBR/NBR matrix. This is reported by Meng Song, Qi Qin, and co-workers in article number 2200072.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":18157,\"journal\":{\"name\":\"Macromolecular Theory and Simulations\",\"volume\":\"32 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202370003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mats.202370003\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202370003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Molecular Simulation and Experimental Study on the Damping and Aging Properties of 4010NA/Hydrogenated Nitrile Butadiene/Nitrile Butadiene Rubber Composites
Front Cover: The effects of 4010NA content on the damping and aging properties of hydrogenated nitrile butadiene rubber (HNBR)/nitrile butadiene rubber (NBR) matrix are studied via molecular simulation and experiments. With an increase in the 4010NA content, there is a decrease in the free volume fraction (FFV), attributed to the hydrogen bond network between 4010NA and the HNBR/NBR matrix. This is reported by Meng Song, Qi Qin, and co-workers in article number 2200072.
期刊介绍:
Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.