Yonggong Ren, Wenqiang Xu, Yuanxin Mao, Yuechu Wu, Bo Fu, Dang N. H. Thanh
{"title":"使用病变区域感知Swin Transformer对皮肤病进行少量注射学习","authors":"Yonggong Ren, Wenqiang Xu, Yuanxin Mao, Yuechu Wu, Bo Fu, Dang N. H. Thanh","doi":"10.1002/ima.22891","DOIUrl":null,"url":null,"abstract":"<p>Skin is the largest organ of the human body and participates in the functional activities of the human body all the time. Therefore, human beings have a large risk of getting skin diseases. The diseased skin lesion image shows visually different characteristics from the normal skin image, and sometimes unusual skin color may indicate human viscera or autoimmune issues. However, the current recognition and classification of dermatological conditions still rely on expert visual diagnosis rather than a visual algorithm. This is because there are many kinds of lesion features of skin diseases, and the lesion accounts for a small proportion of the skin image, so it is difficult to learn the required lesion features; meanwhile, some dermatology images have too few samples to deal with the problem of small samples. In view of the above limitations, we propose a model named Lesion Area Aware Shifted windows Transformer for dermatological conditions classification rely on the powerful performance and excellent result of Swin transformer recently proposed. For brief notation, we use its abbreviation later. Our main contributions are as follows. First, we modify the Swin transformer and use it in the automatic classification of dermatological conditions. Using the self-attention mechanism of the transformer, our method can mine more long-distance correlations between diseased tissue image features. Using its shifting windows, we can fuse local features and global features, so it is possible to get better classification results with a flexible receptive field. Second, we use a skip connection to grasp and reinforce global features from the previous block and use Swin transformer to extract detailed local features, which will excavate and merge global features and local features further. Third, considering Swin transformer is a lightweight model compared with traditional transformers, our model is compact for deployment and more favorable to resource-strict medical devices.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"33 5","pages":"1549-1560"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Few-shot learning for dermatological conditions with Lesion Area Aware Swin Transformer\",\"authors\":\"Yonggong Ren, Wenqiang Xu, Yuanxin Mao, Yuechu Wu, Bo Fu, Dang N. H. Thanh\",\"doi\":\"10.1002/ima.22891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Skin is the largest organ of the human body and participates in the functional activities of the human body all the time. Therefore, human beings have a large risk of getting skin diseases. The diseased skin lesion image shows visually different characteristics from the normal skin image, and sometimes unusual skin color may indicate human viscera or autoimmune issues. However, the current recognition and classification of dermatological conditions still rely on expert visual diagnosis rather than a visual algorithm. This is because there are many kinds of lesion features of skin diseases, and the lesion accounts for a small proportion of the skin image, so it is difficult to learn the required lesion features; meanwhile, some dermatology images have too few samples to deal with the problem of small samples. In view of the above limitations, we propose a model named Lesion Area Aware Shifted windows Transformer for dermatological conditions classification rely on the powerful performance and excellent result of Swin transformer recently proposed. For brief notation, we use its abbreviation later. Our main contributions are as follows. First, we modify the Swin transformer and use it in the automatic classification of dermatological conditions. Using the self-attention mechanism of the transformer, our method can mine more long-distance correlations between diseased tissue image features. Using its shifting windows, we can fuse local features and global features, so it is possible to get better classification results with a flexible receptive field. Second, we use a skip connection to grasp and reinforce global features from the previous block and use Swin transformer to extract detailed local features, which will excavate and merge global features and local features further. Third, considering Swin transformer is a lightweight model compared with traditional transformers, our model is compact for deployment and more favorable to resource-strict medical devices.</p>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"33 5\",\"pages\":\"1549-1560\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.22891\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.22891","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Few-shot learning for dermatological conditions with Lesion Area Aware Swin Transformer
Skin is the largest organ of the human body and participates in the functional activities of the human body all the time. Therefore, human beings have a large risk of getting skin diseases. The diseased skin lesion image shows visually different characteristics from the normal skin image, and sometimes unusual skin color may indicate human viscera or autoimmune issues. However, the current recognition and classification of dermatological conditions still rely on expert visual diagnosis rather than a visual algorithm. This is because there are many kinds of lesion features of skin diseases, and the lesion accounts for a small proportion of the skin image, so it is difficult to learn the required lesion features; meanwhile, some dermatology images have too few samples to deal with the problem of small samples. In view of the above limitations, we propose a model named Lesion Area Aware Shifted windows Transformer for dermatological conditions classification rely on the powerful performance and excellent result of Swin transformer recently proposed. For brief notation, we use its abbreviation later. Our main contributions are as follows. First, we modify the Swin transformer and use it in the automatic classification of dermatological conditions. Using the self-attention mechanism of the transformer, our method can mine more long-distance correlations between diseased tissue image features. Using its shifting windows, we can fuse local features and global features, so it is possible to get better classification results with a flexible receptive field. Second, we use a skip connection to grasp and reinforce global features from the previous block and use Swin transformer to extract detailed local features, which will excavate and merge global features and local features further. Third, considering Swin transformer is a lightweight model compared with traditional transformers, our model is compact for deployment and more favorable to resource-strict medical devices.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.