Weiping Wang, Haiyan Zhao, Chang He, Yuanbo Cui, Zhen Wang, Alexander Hramov, Ping Luan, Xiong Luo, Jipeng Ouyang, Kurths Jürgen
{"title":"轻度认知障碍患者的靶向定位干预和预后评估","authors":"Weiping Wang, Haiyan Zhao, Chang He, Yuanbo Cui, Zhen Wang, Alexander Hramov, Ping Luan, Xiong Luo, Jipeng Ouyang, Kurths Jürgen","doi":"10.1002/brx2.25","DOIUrl":null,"url":null,"abstract":"<p>Currently, no specific treatments are available for Alzheimer's disease (AD). Mild cognitive impairment (MCI), the preclinical stage of AD, has a high possibility of reversing symptoms through neural regulation. A state dynamics model for single brain regions was developed to simulate blood oxygen level-dependent signals in a patient with early mild cognitive impairment. Subsequently, the analysis of functional connections was used to comprehensively consider multiple complex network centralities to locate the intervention targets, and a multiple brain region collaborative control scheme was designed. Finally, the reliability and effectiveness of the intervention were verified at the brain region and subnetwork levels. This technique provides a basis for future clinical diagnosis and treatment of AD and MCI.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.25","citationCount":"1","resultStr":"{\"title\":\"Target localization intervention and prognosis evaluation for an individual with mild cognitive impairment\",\"authors\":\"Weiping Wang, Haiyan Zhao, Chang He, Yuanbo Cui, Zhen Wang, Alexander Hramov, Ping Luan, Xiong Luo, Jipeng Ouyang, Kurths Jürgen\",\"doi\":\"10.1002/brx2.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Currently, no specific treatments are available for Alzheimer's disease (AD). Mild cognitive impairment (MCI), the preclinical stage of AD, has a high possibility of reversing symptoms through neural regulation. A state dynamics model for single brain regions was developed to simulate blood oxygen level-dependent signals in a patient with early mild cognitive impairment. Subsequently, the analysis of functional connections was used to comprehensively consider multiple complex network centralities to locate the intervention targets, and a multiple brain region collaborative control scheme was designed. Finally, the reliability and effectiveness of the intervention were verified at the brain region and subnetwork levels. This technique provides a basis for future clinical diagnosis and treatment of AD and MCI.</p>\",\"PeriodicalId\":94303,\"journal\":{\"name\":\"Brain-X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.25\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/brx2.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-X","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brx2.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Target localization intervention and prognosis evaluation for an individual with mild cognitive impairment
Currently, no specific treatments are available for Alzheimer's disease (AD). Mild cognitive impairment (MCI), the preclinical stage of AD, has a high possibility of reversing symptoms through neural regulation. A state dynamics model for single brain regions was developed to simulate blood oxygen level-dependent signals in a patient with early mild cognitive impairment. Subsequently, the analysis of functional connections was used to comprehensively consider multiple complex network centralities to locate the intervention targets, and a multiple brain region collaborative control scheme was designed. Finally, the reliability and effectiveness of the intervention were verified at the brain region and subnetwork levels. This technique provides a basis for future clinical diagnosis and treatment of AD and MCI.