用于需求管理的机器学习方法的系统映射研究

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING IET Software Pub Date : 2022-12-24 DOI:10.1049/sfw2.12082
Chi Xu, Yuanbang Li, Bangchao Wang, Shi Dong
{"title":"用于需求管理的机器学习方法的系统映射研究","authors":"Chi Xu,&nbsp;Yuanbang Li,&nbsp;Bangchao Wang,&nbsp;Shi Dong","doi":"10.1049/sfw2.12082","DOIUrl":null,"url":null,"abstract":"<p>Requirements management (RM) plays an important role in requirements engineering. The development of machine learning (ML) is in full swing, and many ML software management techniques had been used to improve the performance of RM methods. However, as no research study is known that exists systematically to summarise the ML methods used in RM. To fill this gap, this paper adopts the systematic mapping study to survey the state-of-the-art ML methods for RM primary studies and were finally selected in this mapping, which was published on 36 conferences and journals. The 24 factors affecting the ML method of RM are determined, of which 9, 11 and 4 are the three parts of RM, namely requirements baseline maintenance, requirements traceability and requirements change management separately. The 18 objectives of the ML method for RM are summarised, of which 6, 7 and 5 are the three parts of RM. The eight ML methods used in RM and their time sequence are summarised. The 18 evaluation indexes for RM in the ML method are determined, and the performance of these methods on these parameters is analysed. The research direction of this paper is of great significance to the research of researchers in demand management.</p>","PeriodicalId":50378,"journal":{"name":"IET Software","volume":"17 4","pages":"405-423"},"PeriodicalIF":1.5000,"publicationDate":"2022-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sfw2.12082","citationCount":"0","resultStr":"{\"title\":\"A systematic mapping study on machine learning methodologies for requirements management\",\"authors\":\"Chi Xu,&nbsp;Yuanbang Li,&nbsp;Bangchao Wang,&nbsp;Shi Dong\",\"doi\":\"10.1049/sfw2.12082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Requirements management (RM) plays an important role in requirements engineering. The development of machine learning (ML) is in full swing, and many ML software management techniques had been used to improve the performance of RM methods. However, as no research study is known that exists systematically to summarise the ML methods used in RM. To fill this gap, this paper adopts the systematic mapping study to survey the state-of-the-art ML methods for RM primary studies and were finally selected in this mapping, which was published on 36 conferences and journals. The 24 factors affecting the ML method of RM are determined, of which 9, 11 and 4 are the three parts of RM, namely requirements baseline maintenance, requirements traceability and requirements change management separately. The 18 objectives of the ML method for RM are summarised, of which 6, 7 and 5 are the three parts of RM. The eight ML methods used in RM and their time sequence are summarised. The 18 evaluation indexes for RM in the ML method are determined, and the performance of these methods on these parameters is analysed. The research direction of this paper is of great significance to the research of researchers in demand management.</p>\",\"PeriodicalId\":50378,\"journal\":{\"name\":\"IET Software\",\"volume\":\"17 4\",\"pages\":\"405-423\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sfw2.12082\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/sfw2.12082\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Software","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sfw2.12082","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

需求管理在需求工程中发挥着重要作用。机器学习(ML)的发展正在如火如荼地进行,许多ML软件管理技术已经被用来提高RM方法的性能。然而,由于目前还没有系统总结RM中使用的ML方法的研究。为了填补这一空白,本文采用系统的映射研究来调查RM初级研究的最先进的ML方法,并最终入选该映射,该映射发表在36个会议和期刊上。确定了影响RM ML方法的24个因素,其中9、11和4是RM的三个部分,分别是需求基线维护、需求可追溯性和需求变更管理。总结了RM的ML方法的18个目标,其中6、7和5是RM的三个部分。总结了RM中使用的八种ML方法及其时间序列。确定了ML方法中RM的18个评价指标,并分析了这些方法在这些参数上的性能。本文的研究方向对需求管理研究者的研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A systematic mapping study on machine learning methodologies for requirements management

Requirements management (RM) plays an important role in requirements engineering. The development of machine learning (ML) is in full swing, and many ML software management techniques had been used to improve the performance of RM methods. However, as no research study is known that exists systematically to summarise the ML methods used in RM. To fill this gap, this paper adopts the systematic mapping study to survey the state-of-the-art ML methods for RM primary studies and were finally selected in this mapping, which was published on 36 conferences and journals. The 24 factors affecting the ML method of RM are determined, of which 9, 11 and 4 are the three parts of RM, namely requirements baseline maintenance, requirements traceability and requirements change management separately. The 18 objectives of the ML method for RM are summarised, of which 6, 7 and 5 are the three parts of RM. The eight ML methods used in RM and their time sequence are summarised. The 18 evaluation indexes for RM in the ML method are determined, and the performance of these methods on these parameters is analysed. The research direction of this paper is of great significance to the research of researchers in demand management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Software
IET Software 工程技术-计算机:软件工程
CiteScore
4.20
自引率
0.00%
发文量
27
审稿时长
9 months
期刊介绍: IET Software publishes papers on all aspects of the software lifecycle, including design, development, implementation and maintenance. The focus of the journal is on the methods used to develop and maintain software, and their practical application. Authors are especially encouraged to submit papers on the following topics, although papers on all aspects of software engineering are welcome: Software and systems requirements engineering Formal methods, design methods, practice and experience Software architecture, aspect and object orientation, reuse and re-engineering Testing, verification and validation techniques Software dependability and measurement Human systems engineering and human-computer interaction Knowledge engineering; expert and knowledge-based systems, intelligent agents Information systems engineering Application of software engineering in industry and commerce Software engineering technology transfer Management of software development Theoretical aspects of software development Machine learning Big data and big code Cloud computing Current Special Issue. Call for papers: Knowledge Discovery for Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_KDSD.pdf Big Data Analytics for Sustainable Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_BDASSD.pdf
期刊最新文献
Software Defect Prediction Method Based on Clustering Ensemble Learning ConCPDP: A Cross-Project Defect Prediction Method Integrating Contrastive Pretraining and Category Boundary Adjustment Breaking the Blockchain Trilemma: A Comprehensive Consensus Mechanism for Ensuring Security, Scalability, and Decentralization IC-GraF: An Improved Clustering with Graph-Embedding-Based Features for Software Defect Prediction IAPCP: An Effective Cross-Project Defect Prediction Model via Intra-Domain Alignment and Programming-Based Distribution Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1