Bing-Long Wang, Jian-Fei Wu, Da Xiao, Bo Wu, Dai-Xu Wei
{"title":"大脑中的3-羟基丁酸:生物合成、功能和疾病治疗","authors":"Bing-Long Wang, Jian-Fei Wu, Da Xiao, Bo Wu, Dai-Xu Wei","doi":"10.1002/brx2.6","DOIUrl":null,"url":null,"abstract":"<p>3-hydroxybutyrate (3HB), or BHB, is an anionic small molecule acid metabolite with a hydroxyl group. 3HB is the major ketone body that is distributed in the human brain and its primary energy source when glucose is absent. A better understanding of 3HB and how to adapt neuronal response mechanisms is expected to facilitate the development of new interventions to promote cognitive brain function and prevent neurodegenerative diseases. It provides important concepts for the clinical application of 3HB therapy. This review summarizes the distribution of 3HB in the brain, its properties, and its mechanism in brain and nerve regulation. We focus on 3HB biosynthesis in natural human cells and engineered bacteria via synthetic biology platforms and 3HB treatment in various brain and nerve diseases, including epilepsy, multiple sclerosis, stroke, Parkinson's disease, Alzheimer's disease, Huntington's disease, depressive disorder, and schizophrenia. Ultimately, this review explores the future development trend of 3HB as a potential small-molecule drug for brain and nerve diseases.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.6","citationCount":"2","resultStr":"{\"title\":\"3-hydroxybutyrate in the brain: Biosynthesis, function, and disease therapy\",\"authors\":\"Bing-Long Wang, Jian-Fei Wu, Da Xiao, Bo Wu, Dai-Xu Wei\",\"doi\":\"10.1002/brx2.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>3-hydroxybutyrate (3HB), or BHB, is an anionic small molecule acid metabolite with a hydroxyl group. 3HB is the major ketone body that is distributed in the human brain and its primary energy source when glucose is absent. A better understanding of 3HB and how to adapt neuronal response mechanisms is expected to facilitate the development of new interventions to promote cognitive brain function and prevent neurodegenerative diseases. It provides important concepts for the clinical application of 3HB therapy. This review summarizes the distribution of 3HB in the brain, its properties, and its mechanism in brain and nerve regulation. We focus on 3HB biosynthesis in natural human cells and engineered bacteria via synthetic biology platforms and 3HB treatment in various brain and nerve diseases, including epilepsy, multiple sclerosis, stroke, Parkinson's disease, Alzheimer's disease, Huntington's disease, depressive disorder, and schizophrenia. Ultimately, this review explores the future development trend of 3HB as a potential small-molecule drug for brain and nerve diseases.</p>\",\"PeriodicalId\":94303,\"journal\":{\"name\":\"Brain-X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.6\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/brx2.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-X","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brx2.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3-hydroxybutyrate in the brain: Biosynthesis, function, and disease therapy
3-hydroxybutyrate (3HB), or BHB, is an anionic small molecule acid metabolite with a hydroxyl group. 3HB is the major ketone body that is distributed in the human brain and its primary energy source when glucose is absent. A better understanding of 3HB and how to adapt neuronal response mechanisms is expected to facilitate the development of new interventions to promote cognitive brain function and prevent neurodegenerative diseases. It provides important concepts for the clinical application of 3HB therapy. This review summarizes the distribution of 3HB in the brain, its properties, and its mechanism in brain and nerve regulation. We focus on 3HB biosynthesis in natural human cells and engineered bacteria via synthetic biology platforms and 3HB treatment in various brain and nerve diseases, including epilepsy, multiple sclerosis, stroke, Parkinson's disease, Alzheimer's disease, Huntington's disease, depressive disorder, and schizophrenia. Ultimately, this review explores the future development trend of 3HB as a potential small-molecule drug for brain and nerve diseases.