基于高光谱图像结合卷积神经网络和分区投票的酸枣仁水分预测

IF 2.3 4区 化学 Q1 SOCIAL WORK Journal of Chemometrics Pub Date : 2023-06-28 DOI:10.1002/cem.3505
Xiong Li, Yande Liu, Liangfeng Liu, Xiaogang Jiang, Guantian Wang
{"title":"基于高光谱图像结合卷积神经网络和分区投票的酸枣仁水分预测","authors":"Xiong Li,&nbsp;Yande Liu,&nbsp;Liangfeng Liu,&nbsp;Xiaogang Jiang,&nbsp;Guantian Wang","doi":"10.1002/cem.3505","DOIUrl":null,"url":null,"abstract":"<p>Deep learning algorithms represented by convolutional neural networks bring new opportunities for spectral analysis technology. Convolutional neural networks are more straightforward than traditional chemometric algorithms for detecting the quality of agricultural products, reducing the procedures of spectral preprocessing and band selection, and with higher prediction accuracy. However, there are few research papers on the relevance of the explanation of the convolutional neural networks model mechanism, and the reader cannot fully understand convolutional neural networks feature learning. In this study, convolutional neural networks combined with the subregional voting method were used to predict the moisture content of semen ziziphi spinosae. Firstly, 10 regions of interest were divided using the subregional voting method, and the results of network models were compared. It was found that the average spectrum of the fifth region of interest had the best prediction of moisture content because it was closest to the central region of semen ziziphi spinosae. Based on this, a convolutional neural network containing three convolutional layers, three pooling layers, and one fully connected layer is proposed. Partial least squares regression, backpropagation neural network, and convolutional neural networks were established to predict the moisture content of semen ziziphi spinosae. The correlation coefficient of the prediction set of the partial least squares regression is 0.98 after the multiplicative scatter correction preprocessed the spectra, and correlation coefficient of the prediction set of the backpropagation neural network is 0.83 after the standard normal variate preprocessed the spectra. The correlation coefficient of the prediction set of the convolutional neural networks established by using the raw spectra reached 0.99. The spectral preprocessing method can improve the prediction set correlation coefficient of partial least squares regression and backpropagation neural network. Still, it will reduce the prediction ability of convolutional neural networks. This study also analyzed the effect of different learning rates on the performance of convolutional neural networks, and it was found that the training loss and training accuracy performed most consistently when the learning rate was 0.01. Secondly, this study also visualized the output feature maps of the three convolutional layers of convolutional neural networks and verified the effectiveness of convolutional neural networks feature band extraction. This study provides new ideas for deep learning in the online detection of seed moisture content.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"37 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moisture content prediction of semen ziziphi spinosae based on hyperspectral images coupled with convolutional neural networks and subregional voting\",\"authors\":\"Xiong Li,&nbsp;Yande Liu,&nbsp;Liangfeng Liu,&nbsp;Xiaogang Jiang,&nbsp;Guantian Wang\",\"doi\":\"10.1002/cem.3505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep learning algorithms represented by convolutional neural networks bring new opportunities for spectral analysis technology. Convolutional neural networks are more straightforward than traditional chemometric algorithms for detecting the quality of agricultural products, reducing the procedures of spectral preprocessing and band selection, and with higher prediction accuracy. However, there are few research papers on the relevance of the explanation of the convolutional neural networks model mechanism, and the reader cannot fully understand convolutional neural networks feature learning. In this study, convolutional neural networks combined with the subregional voting method were used to predict the moisture content of semen ziziphi spinosae. Firstly, 10 regions of interest were divided using the subregional voting method, and the results of network models were compared. It was found that the average spectrum of the fifth region of interest had the best prediction of moisture content because it was closest to the central region of semen ziziphi spinosae. Based on this, a convolutional neural network containing three convolutional layers, three pooling layers, and one fully connected layer is proposed. Partial least squares regression, backpropagation neural network, and convolutional neural networks were established to predict the moisture content of semen ziziphi spinosae. The correlation coefficient of the prediction set of the partial least squares regression is 0.98 after the multiplicative scatter correction preprocessed the spectra, and correlation coefficient of the prediction set of the backpropagation neural network is 0.83 after the standard normal variate preprocessed the spectra. The correlation coefficient of the prediction set of the convolutional neural networks established by using the raw spectra reached 0.99. The spectral preprocessing method can improve the prediction set correlation coefficient of partial least squares regression and backpropagation neural network. Still, it will reduce the prediction ability of convolutional neural networks. This study also analyzed the effect of different learning rates on the performance of convolutional neural networks, and it was found that the training loss and training accuracy performed most consistently when the learning rate was 0.01. Secondly, this study also visualized the output feature maps of the three convolutional layers of convolutional neural networks and verified the effectiveness of convolutional neural networks feature band extraction. This study provides new ideas for deep learning in the online detection of seed moisture content.</p>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"37 10\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.3505\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3505","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

摘要

以卷积神经网络为代表的深度学习算法为频谱分析技术带来了新的机遇。在检测农产品质量方面,卷积神经网络比传统的化学计量算法更简单,减少了光谱预处理和波段选择的过程,并且具有更高的预测精度。然而,关于卷积神经网络模型机制解释的相关性的研究论文很少,读者无法完全理解卷积神经网络的特征学习。本研究采用卷积神经网络结合分区投票法对酸枣仁的水分含量进行了预测。首先,使用次区域投票法对10个感兴趣的区域进行划分,并对网络模型的结果进行比较。研究发现,第五感兴趣区域的平均光谱对水分含量的预测最好,因为它最接近酸枣仁的中心区域。在此基础上,提出了一个包含三个卷积层、三个池化层和一个全连接层的卷积神经网络。建立了偏最小二乘回归、反向传播神经网络和卷积神经网络对酸枣仁水分含量的预测方法。乘性散射校正对谱进行预处理后,偏最小二乘回归预测集的相关系数为0.98,标准正态变量对谱进行前处理后,反向传播神经网络预测集的相关性系数为0.83。利用原始谱建立的卷积神经网络预测集的相关系数达到0.99。谱预处理方法可以提高偏最小二乘回归和反向传播神经网络的预测集相关系数。不过,这将降低卷积神经网络的预测能力。本研究还分析了不同学习率对卷积神经网络性能的影响,发现当学习率为0.01时,训练损失和训练精度表现最为一致。其次,本研究还对卷积神经网络的三个卷积层的输出特征图进行了可视化,验证了卷积神经网络特征带提取的有效性。本研究为种子水分含量在线检测的深度学习提供了新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Moisture content prediction of semen ziziphi spinosae based on hyperspectral images coupled with convolutional neural networks and subregional voting

Deep learning algorithms represented by convolutional neural networks bring new opportunities for spectral analysis technology. Convolutional neural networks are more straightforward than traditional chemometric algorithms for detecting the quality of agricultural products, reducing the procedures of spectral preprocessing and band selection, and with higher prediction accuracy. However, there are few research papers on the relevance of the explanation of the convolutional neural networks model mechanism, and the reader cannot fully understand convolutional neural networks feature learning. In this study, convolutional neural networks combined with the subregional voting method were used to predict the moisture content of semen ziziphi spinosae. Firstly, 10 regions of interest were divided using the subregional voting method, and the results of network models were compared. It was found that the average spectrum of the fifth region of interest had the best prediction of moisture content because it was closest to the central region of semen ziziphi spinosae. Based on this, a convolutional neural network containing three convolutional layers, three pooling layers, and one fully connected layer is proposed. Partial least squares regression, backpropagation neural network, and convolutional neural networks were established to predict the moisture content of semen ziziphi spinosae. The correlation coefficient of the prediction set of the partial least squares regression is 0.98 after the multiplicative scatter correction preprocessed the spectra, and correlation coefficient of the prediction set of the backpropagation neural network is 0.83 after the standard normal variate preprocessed the spectra. The correlation coefficient of the prediction set of the convolutional neural networks established by using the raw spectra reached 0.99. The spectral preprocessing method can improve the prediction set correlation coefficient of partial least squares regression and backpropagation neural network. Still, it will reduce the prediction ability of convolutional neural networks. This study also analyzed the effect of different learning rates on the performance of convolutional neural networks, and it was found that the training loss and training accuracy performed most consistently when the learning rate was 0.01. Secondly, this study also visualized the output feature maps of the three convolutional layers of convolutional neural networks and verified the effectiveness of convolutional neural networks feature band extraction. This study provides new ideas for deep learning in the online detection of seed moisture content.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
期刊最新文献
Issue Information Cover Image Past, Present and Future of Research in Analytical Figures of Merit Analytical Figures of Merit in Univariate, Multivariate, and Multiway Calibration: What Have We Learned? What Do We Still Need to Learn? Paul Geladi (1951–2024) Chemometrician, spectroscopist and pioneer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1