基于Ricci流的可全局开发离散建筑曲面设计工具

IF 0.8 0 ARCHITECTURE Japan Architectural Review Pub Date : 2023-10-20 DOI:10.1002/2475-8876.12410
Jingyao Zhang, Makoto Ohsaki
{"title":"基于Ricci流的可全局开发离散建筑曲面设计工具","authors":"Jingyao Zhang,&nbsp;Makoto Ohsaki","doi":"10.1002/2475-8876.12410","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an approach for the design of discrete architectural surfaces that are globally developable; that is, having zero Gaussian curvature at every interior node. This kind of architectural surface is particularly suitable for fast fabrication at a low cost, since their curved geometry can be developed into a plane. This highly non-linear design problem is broken down into two sub-problems: (1) find the member lengths of a triangular mesh that lead to zero Gaussian curvature, by employing the discrete surface Ricci flow developed in the field of discrete differential geometry; (2) realize the final geometry by solving an optimization problem, subject to the constraints on member lengths as well as the given boundary. It is demonstrated by the numerical examples that both of these two sub-problems can be solved with small computational costs and sufficient accuracy. In addition, the Ricci flow algorithm has an attractive feature—the final design is conformal to the initial one. Conformality could result in higher structural performance, because the shape of each panel is kept as close as possible to its initial design, suppressing possible distortion of the panels. This paper further presents an improved circle packing scheme implemented in the discrete surface Ricci flow to achieve better conformality, while keeping its simplicity in algorithm implementation as in the existing Thurston's scheme .</p>","PeriodicalId":42793,"journal":{"name":"Japan Architectural Review","volume":"6 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/2475-8876.12410","citationCount":"0","resultStr":"{\"title\":\"A design tool for globally developable discrete architectural surfaces using Ricci flow\",\"authors\":\"Jingyao Zhang,&nbsp;Makoto Ohsaki\",\"doi\":\"10.1002/2475-8876.12410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents an approach for the design of discrete architectural surfaces that are globally developable; that is, having zero Gaussian curvature at every interior node. This kind of architectural surface is particularly suitable for fast fabrication at a low cost, since their curved geometry can be developed into a plane. This highly non-linear design problem is broken down into two sub-problems: (1) find the member lengths of a triangular mesh that lead to zero Gaussian curvature, by employing the discrete surface Ricci flow developed in the field of discrete differential geometry; (2) realize the final geometry by solving an optimization problem, subject to the constraints on member lengths as well as the given boundary. It is demonstrated by the numerical examples that both of these two sub-problems can be solved with small computational costs and sufficient accuracy. In addition, the Ricci flow algorithm has an attractive feature—the final design is conformal to the initial one. Conformality could result in higher structural performance, because the shape of each panel is kept as close as possible to its initial design, suppressing possible distortion of the panels. This paper further presents an improved circle packing scheme implemented in the discrete surface Ricci flow to achieve better conformality, while keeping its simplicity in algorithm implementation as in the existing Thurston's scheme .</p>\",\"PeriodicalId\":42793,\"journal\":{\"name\":\"Japan Architectural Review\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/2475-8876.12410\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japan Architectural Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/2475-8876.12410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Architectural Review","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/2475-8876.12410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种设计可全局开发的离散建筑表面的方法;即在每个内部节点处具有零高斯曲率。这种建筑表面特别适合以低成本快速制造,因为它们的弯曲几何形状可以发展成平面。这个高度非线性的设计问题被分解为两个子问题:(1)通过使用离散微分几何领域中发展的离散曲面Ricci流,找到导致零高斯曲率的三角形网格的成员长度;(2) 通过求解优化问题来实现最终的几何结构,受构件长度和给定边界的约束。数值算例表明,这两个子问题都可以以较小的计算成本和足够的精度求解。此外,Ricci流算法还有一个吸引人的特点——最终设计与初始设计一致。一致性可以带来更高的结构性能,因为每个面板的形状都尽可能接近其初始设计,从而抑制面板可能的变形。本文进一步提出了一种在离散曲面Ricci流中实现的改进的圆填充方案,以实现更好的一致性,同时保持其与现有Thurston方案一样在算法实现上的简单性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A design tool for globally developable discrete architectural surfaces using Ricci flow

This paper presents an approach for the design of discrete architectural surfaces that are globally developable; that is, having zero Gaussian curvature at every interior node. This kind of architectural surface is particularly suitable for fast fabrication at a low cost, since their curved geometry can be developed into a plane. This highly non-linear design problem is broken down into two sub-problems: (1) find the member lengths of a triangular mesh that lead to zero Gaussian curvature, by employing the discrete surface Ricci flow developed in the field of discrete differential geometry; (2) realize the final geometry by solving an optimization problem, subject to the constraints on member lengths as well as the given boundary. It is demonstrated by the numerical examples that both of these two sub-problems can be solved with small computational costs and sufficient accuracy. In addition, the Ricci flow algorithm has an attractive feature—the final design is conformal to the initial one. Conformality could result in higher structural performance, because the shape of each panel is kept as close as possible to its initial design, suppressing possible distortion of the panels. This paper further presents an improved circle packing scheme implemented in the discrete surface Ricci flow to achieve better conformality, while keeping its simplicity in algorithm implementation as in the existing Thurston's scheme .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
58
审稿时长
15 weeks
期刊最新文献
Investigation of indoor microplastics in settled indoor house dust in single-person residential buildings in Japan An investigation of the effect of vibration duration on the evaluation of subjective responses to horizontal vibration Design process of the Memorial Cathedral for World Peace (1954), Hiroshima, by Togo Murano (Part 4): Formal manipulations observed in the process of working design and construction instruction of the cathedral (1948–1954) Communication behavior and space utilization of office workers in a research facility's activity-based workplace A new processing method of ground acceleration data for fast and accurate evaluation of maximum seismic structural response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1