封面:碳中和,第2卷,第3期,2023年5月

Linjun Wang, Haodong Shi, Yingpeng Xie, Zhong-Shuai Wu
{"title":"封面:碳中和,第2卷,第3期,2023年5月","authors":"Linjun Wang,&nbsp;Haodong Shi,&nbsp;Yingpeng Xie,&nbsp;Zhong-Shuai Wu","doi":"10.1002/cnl2.74","DOIUrl":null,"url":null,"abstract":"<p><b>Front cover image:</b> Sulfurized polyacrylonitrile (SPAN) with a “solid-solid” conversion mechanism in carbonated-based electrolyte eradicating the polysulfides shutting issue is considered as an ideal cathode for stabilizing lithium sulfur (Li-S) batteries. However, the sluggish reaction kinetics and low sulfur content of the SPAN limits its practical application. In article number CNL261, the MoS<sub>2</sub> doped SPAN (MoS<sub>2</sub>@SPAN) is demonstrated to accelerate the solid-solid conversion kinetics of SPAN for high-power and long-life Li-S batteries. Benefitting from the accelerated lithium-ion transfer rate, a fast ion transport channel and enhanced redox reaction kinetics of sulfur to Li<sub>2</sub>S<sub>2</sub>/Li<sub>2</sub>S is realized via MoS<sub>2</sub> catalysis, and excellent electrochemical performance is achieved. This work provides a reliable strategy for the design of SPAN cathode in high-rate and long-term Li-S batteries.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.74","citationCount":"0","resultStr":"{\"title\":\"Front Cover: Carbon Neutralization, Volume 2, Issue 3, May 2023\",\"authors\":\"Linjun Wang,&nbsp;Haodong Shi,&nbsp;Yingpeng Xie,&nbsp;Zhong-Shuai Wu\",\"doi\":\"10.1002/cnl2.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Front cover image:</b> Sulfurized polyacrylonitrile (SPAN) with a “solid-solid” conversion mechanism in carbonated-based electrolyte eradicating the polysulfides shutting issue is considered as an ideal cathode for stabilizing lithium sulfur (Li-S) batteries. However, the sluggish reaction kinetics and low sulfur content of the SPAN limits its practical application. In article number CNL261, the MoS<sub>2</sub> doped SPAN (MoS<sub>2</sub>@SPAN) is demonstrated to accelerate the solid-solid conversion kinetics of SPAN for high-power and long-life Li-S batteries. Benefitting from the accelerated lithium-ion transfer rate, a fast ion transport channel and enhanced redox reaction kinetics of sulfur to Li<sub>2</sub>S<sub>2</sub>/Li<sub>2</sub>S is realized via MoS<sub>2</sub> catalysis, and excellent electrochemical performance is achieved. This work provides a reliable strategy for the design of SPAN cathode in high-rate and long-term Li-S batteries.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.74\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

封面图片:硫化聚丙烯腈(SPAN)在碳酸基电解质中具有“固-固”转化机制,消除了多硫化物的关闭问题,被认为是稳定锂硫(Li-S)电池的理想阴极。然而,SPAN反应动力学缓慢,含硫量低,限制了其实际应用。在编号为CNL261的文章中,MoS2掺杂的SPAN(MoS2@SPAN)被证明可以加速用于高功率和长寿命Li-S电池的SPAN的固-固转换动力学。得益于加速的锂离子转移速率,通过MoS2催化实现了快速的离子传输通道和增强的硫向Li2S2/Li2S的氧化还原反应动力学,并获得了优异的电化学性能。这项工作为高倍率和长期锂硫电池中SPAN阴极的设计提供了可靠的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Front Cover: Carbon Neutralization, Volume 2, Issue 3, May 2023

Front cover image: Sulfurized polyacrylonitrile (SPAN) with a “solid-solid” conversion mechanism in carbonated-based electrolyte eradicating the polysulfides shutting issue is considered as an ideal cathode for stabilizing lithium sulfur (Li-S) batteries. However, the sluggish reaction kinetics and low sulfur content of the SPAN limits its practical application. In article number CNL261, the MoS2 doped SPAN (MoS2@SPAN) is demonstrated to accelerate the solid-solid conversion kinetics of SPAN for high-power and long-life Li-S batteries. Benefitting from the accelerated lithium-ion transfer rate, a fast ion transport channel and enhanced redox reaction kinetics of sulfur to Li2S2/Li2S is realized via MoS2 catalysis, and excellent electrochemical performance is achieved. This work provides a reliable strategy for the design of SPAN cathode in high-rate and long-term Li-S batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A systematic study of switching, optoelectronics, and gas‐sensitive properties of PCF‐graphene‐based nanodevices: Insights from DFT study Issue Information Front Cover: Carbon Neutralization, Volume 3, Issue 4, July 2024 Inside Front Cover Image: Carbon Neutralization, Volume 3, Issue 4, July 2024 Back Cover Image: Carbon Neutralization, Volume 3, Issue 4, July 2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1