{"title":"银、氧化锆和氧化硅纳米颗粒作为抗菌剂对牙周病细菌细胞损伤的研究","authors":"Yeşim Dağlıoğlu, Mustafa Cihan Yavuz, Omer Ertürk, Fuad Ameen, Mehrdad Khatami","doi":"10.1049/mna2.12178","DOIUrl":null,"url":null,"abstract":"<p>Antibiotic resistance is one of the biggest public health problems of our time. The nanoparticles are a powerful alternative to these antibiotics. Engineered nanoparticles show toxic effects on bacteria by different mechanisms. The bacteria–cell interaction of engineered nanoparticles exerts their toxic effects through changes in cell wall, cell membrane, and cytoplasm content/density. Thus, death occurs as a result of cell deformation. In this study, the cellular damage of silver nanoparticles, which are known to have strong antibacterial properties, and zirconium oxide and silicon oxide engineering nanoparticles, which are less known, on periodontopathic (<i>Prevotella intermedia</i> and <i>Aggregatibacter actinomycetemcomitans</i>) bacteria, were investigated by ultrastructural changes. The lysis of the cytoplasm and separation of the membrane cytoplasm were observed. Both types of bacteria treated with Ag ENP show more hollow cytoplasm than bacteria treated with the other two nanoparticles.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"18 9-12","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12178","citationCount":"0","resultStr":"{\"title\":\"Investigation of cell damage of periodontopathic bacteria exposed to silver, zirconium oxide, and silicon oxide nanoparticles as antibacterial agents\",\"authors\":\"Yeşim Dağlıoğlu, Mustafa Cihan Yavuz, Omer Ertürk, Fuad Ameen, Mehrdad Khatami\",\"doi\":\"10.1049/mna2.12178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antibiotic resistance is one of the biggest public health problems of our time. The nanoparticles are a powerful alternative to these antibiotics. Engineered nanoparticles show toxic effects on bacteria by different mechanisms. The bacteria–cell interaction of engineered nanoparticles exerts their toxic effects through changes in cell wall, cell membrane, and cytoplasm content/density. Thus, death occurs as a result of cell deformation. In this study, the cellular damage of silver nanoparticles, which are known to have strong antibacterial properties, and zirconium oxide and silicon oxide engineering nanoparticles, which are less known, on periodontopathic (<i>Prevotella intermedia</i> and <i>Aggregatibacter actinomycetemcomitans</i>) bacteria, were investigated by ultrastructural changes. The lysis of the cytoplasm and separation of the membrane cytoplasm were observed. Both types of bacteria treated with Ag ENP show more hollow cytoplasm than bacteria treated with the other two nanoparticles.</p>\",\"PeriodicalId\":18398,\"journal\":{\"name\":\"Micro & Nano Letters\",\"volume\":\"18 9-12\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12178\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro & Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/mna2.12178\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mna2.12178","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of cell damage of periodontopathic bacteria exposed to silver, zirconium oxide, and silicon oxide nanoparticles as antibacterial agents
Antibiotic resistance is one of the biggest public health problems of our time. The nanoparticles are a powerful alternative to these antibiotics. Engineered nanoparticles show toxic effects on bacteria by different mechanisms. The bacteria–cell interaction of engineered nanoparticles exerts their toxic effects through changes in cell wall, cell membrane, and cytoplasm content/density. Thus, death occurs as a result of cell deformation. In this study, the cellular damage of silver nanoparticles, which are known to have strong antibacterial properties, and zirconium oxide and silicon oxide engineering nanoparticles, which are less known, on periodontopathic (Prevotella intermedia and Aggregatibacter actinomycetemcomitans) bacteria, were investigated by ultrastructural changes. The lysis of the cytoplasm and separation of the membrane cytoplasm were observed. Both types of bacteria treated with Ag ENP show more hollow cytoplasm than bacteria treated with the other two nanoparticles.
期刊介绍:
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities.
Scope
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities.
Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications.
Typical topics include:
Micro and nanostructures for the device communities
MEMS and NEMS
Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data
Synthesis and processing
Micro and nano-photonics
Molecular machines, circuits and self-assembly
Organic and inorganic micro and nanostructures
Micro and nano-fluidics