用HFACS–CatBoost和SHAP量化和比较电气误操作事故中人为和组织因素的影响

IF 2.2 3区 工程技术 Q3 ENGINEERING, MANUFACTURING Human Factors and Ergonomics in Manufacturing & Service Industries Pub Date : 2022-10-25 DOI:10.1002/hfm.20975
Chuan Lin, Qifeng Xu, Yifan Huang
{"title":"用HFACS–CatBoost和SHAP量化和比较电气误操作事故中人为和组织因素的影响","authors":"Chuan Lin,&nbsp;Qifeng Xu,&nbsp;Yifan Huang","doi":"10.1002/hfm.20975","DOIUrl":null,"url":null,"abstract":"<p>The proportion of electric maloperation accidents (EMAs) in substations caused by human and organizational factors (HOFs) has gradually increased. Although there has been some research into the factors affecting EMAs in substations, the available results are insufficient to support the interpretation of HOFs in EMAs. This article explores the relationships between the HOFs and EMAs using Human Factors Analysis and Classification System-gradient boosting with categorical features support (HFACS–CatBoost) and Shapley Additive exPlanation (SHAP) methods. First, the HFACS framework was introduced to identify 135 EMAs in the Southern Power Grid risk causation. CatBoost was used to construct an accident classification model to analyze the important relationship between accidents and HOFs and to compare and analyze with the extreme gradient boosting (XGBoost) and the binary logistic regression (BLR) to verify the superiority of CatBoost. Finally, to solve the problem of inadequate interpretation of the CatBoost black-box model, the SHAP value plot was applied to express the contribution degree relationship between accidents and HOFs. The results show that the above method can explore and explain the importance and contribution of HOFs in EMAs. And from this, it is concluded that poor psychological state, poor communication and coordination, inadequate supervision, and inadequate training and education are highly correlated with the occurrence of EMAs. The findings will help substation operations and maintenance staff to develop safety measures to address the confusion of HOFs in substations and prevent the occurrence of EMAs.</p>","PeriodicalId":55048,"journal":{"name":"Human Factors and Ergonomics in Manufacturing & Service Industries","volume":"33 2","pages":"164-183"},"PeriodicalIF":2.2000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantifying and comparing the effects of human and organizational factors in electric maloperation accidents with HFACS–CatBoost and SHAP\",\"authors\":\"Chuan Lin,&nbsp;Qifeng Xu,&nbsp;Yifan Huang\",\"doi\":\"10.1002/hfm.20975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The proportion of electric maloperation accidents (EMAs) in substations caused by human and organizational factors (HOFs) has gradually increased. Although there has been some research into the factors affecting EMAs in substations, the available results are insufficient to support the interpretation of HOFs in EMAs. This article explores the relationships between the HOFs and EMAs using Human Factors Analysis and Classification System-gradient boosting with categorical features support (HFACS–CatBoost) and Shapley Additive exPlanation (SHAP) methods. First, the HFACS framework was introduced to identify 135 EMAs in the Southern Power Grid risk causation. CatBoost was used to construct an accident classification model to analyze the important relationship between accidents and HOFs and to compare and analyze with the extreme gradient boosting (XGBoost) and the binary logistic regression (BLR) to verify the superiority of CatBoost. Finally, to solve the problem of inadequate interpretation of the CatBoost black-box model, the SHAP value plot was applied to express the contribution degree relationship between accidents and HOFs. The results show that the above method can explore and explain the importance and contribution of HOFs in EMAs. And from this, it is concluded that poor psychological state, poor communication and coordination, inadequate supervision, and inadequate training and education are highly correlated with the occurrence of EMAs. The findings will help substation operations and maintenance staff to develop safety measures to address the confusion of HOFs in substations and prevent the occurrence of EMAs.</p>\",\"PeriodicalId\":55048,\"journal\":{\"name\":\"Human Factors and Ergonomics in Manufacturing & Service Industries\",\"volume\":\"33 2\",\"pages\":\"164-183\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Factors and Ergonomics in Manufacturing & Service Industries\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hfm.20975\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors and Ergonomics in Manufacturing & Service Industries","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hfm.20975","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

摘要

由人为和组织因素(HOF)引起的变电站电气误操作事故(EMA)的比例逐渐增加。尽管已经对影响变电站EMA的因素进行了一些研究,但现有的结果不足以支持对EMA中HOF的解释。本文使用人因分析和分类系统梯度增强与分类特征支持(HFACS–CatBoost)和Shapley加性预测(SHAP)方法探讨了HOF和EMA之间的关系。首先,引入HFACS框架来确定南方电网中135个EMA的风险原因。使用CatBoost构建事故分类模型,分析事故与HOF之间的重要关系,并与极限梯度提升(XGBoost)和二元逻辑回归(BLR)进行比较分析,验证CatBoost的优越性。最后,为了解决CatBoost黑箱模型解释不充分的问题,应用SHAP值图来表达事故与HOF之间的贡献度关系。结果表明,上述方法可以探索和解释HOFs在EMA中的重要性和贡献。由此得出结论,心理状态差、沟通协调差、监督不力、培训教育不足与EMA的发生高度相关。这些发现将有助于变电站运营和维护人员制定安全措施,以解决变电站HOF的混乱问题,并防止EMA的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying and comparing the effects of human and organizational factors in electric maloperation accidents with HFACS–CatBoost and SHAP

The proportion of electric maloperation accidents (EMAs) in substations caused by human and organizational factors (HOFs) has gradually increased. Although there has been some research into the factors affecting EMAs in substations, the available results are insufficient to support the interpretation of HOFs in EMAs. This article explores the relationships between the HOFs and EMAs using Human Factors Analysis and Classification System-gradient boosting with categorical features support (HFACS–CatBoost) and Shapley Additive exPlanation (SHAP) methods. First, the HFACS framework was introduced to identify 135 EMAs in the Southern Power Grid risk causation. CatBoost was used to construct an accident classification model to analyze the important relationship between accidents and HOFs and to compare and analyze with the extreme gradient boosting (XGBoost) and the binary logistic regression (BLR) to verify the superiority of CatBoost. Finally, to solve the problem of inadequate interpretation of the CatBoost black-box model, the SHAP value plot was applied to express the contribution degree relationship between accidents and HOFs. The results show that the above method can explore and explain the importance and contribution of HOFs in EMAs. And from this, it is concluded that poor psychological state, poor communication and coordination, inadequate supervision, and inadequate training and education are highly correlated with the occurrence of EMAs. The findings will help substation operations and maintenance staff to develop safety measures to address the confusion of HOFs in substations and prevent the occurrence of EMAs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
8.30%
发文量
37
审稿时长
6.0 months
期刊介绍: The purpose of Human Factors and Ergonomics in Manufacturing & Service Industries is to facilitate discovery, integration, and application of scientific knowledge about human aspects of manufacturing, and to provide a forum for worldwide dissemination of such knowledge for its application and benefit to manufacturing industries. The journal covers a broad spectrum of ergonomics and human factors issues with a focus on the design, operation and management of contemporary manufacturing systems, both in the shop floor and office environments, in the quest for manufacturing agility, i.e. enhancement and integration of human skills with hardware performance for improved market competitiveness, management of change, product and process quality, and human-system reliability. The inter- and cross-disciplinary nature of the journal allows for a wide scope of issues relevant to manufacturing system design and engineering, human resource management, social, organizational, safety, and health issues. Examples of specific subject areas of interest include: implementation of advanced manufacturing technology, human aspects of computer-aided design and engineering, work design, compensation and appraisal, selection training and education, labor-management relations, agile manufacturing and virtual companies, human factors in total quality management, prevention of work-related musculoskeletal disorders, ergonomics of workplace, equipment and tool design, ergonomics programs, guides and standards for industry, automation safety and robot systems, human skills development and knowledge enhancing technologies, reliability, and safety and worker health issues.
期刊最新文献
The Impact of Individual and Team-Level Variables on Burnout in Healthcare Providers Towards Holistic Functional Task Analysis Issue Information An expository analysis of biomechanical and subjective impacts induced by shoe inserts in asymptomatic subjects: A systematic review on functionality and mechanisms of action Evaluating human error probability in maintenance task: An integrated system dynamics and machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1