使用Rachev比率对P2P交易市场中的清洁能源投资组合进行尾部风险调整

Jisma M, Vivek Mohan, Mini Shaji Thomas, Karthik Thirumala
{"title":"使用Rachev比率对P2P交易市场中的清洁能源投资组合进行尾部风险调整","authors":"Jisma M,&nbsp;Vivek Mohan,&nbsp;Mini Shaji Thomas,&nbsp;Karthik Thirumala","doi":"10.1049/enc2.12081","DOIUrl":null,"url":null,"abstract":"<p>Renewable energy sources (RES) and electric vehicles (EVs) pose ‘energy-risk’ in peer energy commitments due to their temporal and spatial uncertainties. Thus, optimistic commitments in the peer-to-peer transactive energy market (P2P TEM) are improbable. This paper proposes a two-stage master–slave portfolio optimization approach for combining energy-risk of RES and EVs, and welfare-risk of peers, in building clean energy portfolios. The master portfolio (MP) refers to the shares of renewable and EVs in P2P market settlement, whereas the slave portfolio (SP) gives the wind-solar mix within renewables. Here, Rachev Ratio (RR), an index used in financial portfolio selection for tail-risk management, is adapted and combined with Markowitz Efficient Frontier (EF) to find the optimal slave portfolio. Both the extreme tails are optimized, encouraging energy outputs far above forecast and discouraging those far below forecast. The master portfolio is obtained by maximizing the sum of the average welfare of the peers at the best (right) and worst (left) tails of the welfare distribution curve using Stochastic Weight Trade-off Particle Swarm Optimization (SWT-PSO). The proposed portfolio selection approach is better in terms of increased expected energy output, improved utilization of RES and EVs, and better collective peer welfare.</p>","PeriodicalId":100467,"journal":{"name":"Energy Conversion and Economics","volume":"4 2","pages":"105-122"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.12081","citationCount":"0","resultStr":"{\"title\":\"Tail risk adjusted clean energy portfolios in P2P transactive markets using Rachev ratio\",\"authors\":\"Jisma M,&nbsp;Vivek Mohan,&nbsp;Mini Shaji Thomas,&nbsp;Karthik Thirumala\",\"doi\":\"10.1049/enc2.12081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Renewable energy sources (RES) and electric vehicles (EVs) pose ‘energy-risk’ in peer energy commitments due to their temporal and spatial uncertainties. Thus, optimistic commitments in the peer-to-peer transactive energy market (P2P TEM) are improbable. This paper proposes a two-stage master–slave portfolio optimization approach for combining energy-risk of RES and EVs, and welfare-risk of peers, in building clean energy portfolios. The master portfolio (MP) refers to the shares of renewable and EVs in P2P market settlement, whereas the slave portfolio (SP) gives the wind-solar mix within renewables. Here, Rachev Ratio (RR), an index used in financial portfolio selection for tail-risk management, is adapted and combined with Markowitz Efficient Frontier (EF) to find the optimal slave portfolio. Both the extreme tails are optimized, encouraging energy outputs far above forecast and discouraging those far below forecast. The master portfolio is obtained by maximizing the sum of the average welfare of the peers at the best (right) and worst (left) tails of the welfare distribution curve using Stochastic Weight Trade-off Particle Swarm Optimization (SWT-PSO). The proposed portfolio selection approach is better in terms of increased expected energy output, improved utilization of RES and EVs, and better collective peer welfare.</p>\",\"PeriodicalId\":100467,\"journal\":{\"name\":\"Energy Conversion and Economics\",\"volume\":\"4 2\",\"pages\":\"105-122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.12081\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/enc2.12081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Economics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enc2.12081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源(RES)和电动汽车(EV)由于其时间和空间的不确定性,在同行能源承诺中构成了“能源风险”。因此,在对等交易能源市场(P2P TEM)中做出乐观的承诺是不可能的。本文提出了一种两阶段主从投资组合优化方法,用于在构建清洁能源投资组合时,将可再生能源和电动汽车的能源风险与同行的福利风险相结合。主投资组合(MP)是指可再生能源和电动汽车在P2P市场结算中的份额,而从投资组合(SP)则给出了可再生能源中的风能-太阳能组合。在这里,Rachev Ratio(RR),一个用于尾部风险管理的金融投资组合选择的指数,被调整并与Markowitz Efficient Frontier(EF)相结合,以找到最优的从属投资组合。两种极端尾部都经过了优化,鼓励了远高于预测的能源输出,并阻止了远低于预测的能源产出。主投资组合是通过使用随机权重权衡粒子群优化(SWT-PSO)在福利分布曲线的最佳(右)和最差(左)尾部最大化同行的平均福利之和来获得的。所提出的投资组合选择方法在增加预期能源输出、提高可再生能源和电动汽车的利用率以及更好的集体同行福利方面更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tail risk adjusted clean energy portfolios in P2P transactive markets using Rachev ratio

Renewable energy sources (RES) and electric vehicles (EVs) pose ‘energy-risk’ in peer energy commitments due to their temporal and spatial uncertainties. Thus, optimistic commitments in the peer-to-peer transactive energy market (P2P TEM) are improbable. This paper proposes a two-stage master–slave portfolio optimization approach for combining energy-risk of RES and EVs, and welfare-risk of peers, in building clean energy portfolios. The master portfolio (MP) refers to the shares of renewable and EVs in P2P market settlement, whereas the slave portfolio (SP) gives the wind-solar mix within renewables. Here, Rachev Ratio (RR), an index used in financial portfolio selection for tail-risk management, is adapted and combined with Markowitz Efficient Frontier (EF) to find the optimal slave portfolio. Both the extreme tails are optimized, encouraging energy outputs far above forecast and discouraging those far below forecast. The master portfolio is obtained by maximizing the sum of the average welfare of the peers at the best (right) and worst (left) tails of the welfare distribution curve using Stochastic Weight Trade-off Particle Swarm Optimization (SWT-PSO). The proposed portfolio selection approach is better in terms of increased expected energy output, improved utilization of RES and EVs, and better collective peer welfare.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel online reinforcement learning-based linear quadratic regulator for three-level neutral-point clamped DC/AC inverter Artificial intelligence-driven insights: Precision tracking of power plant carbon emissions using satellite data Forecasting masked-load with invisible distributed energy resources based on transfer learning and Bayesian tuning Collaborative deployment of multiple reinforcement methods for network-loss reduction in distribution system with seasonal loads State-of-health estimation of lithium-ion batteries: A comprehensive literature review from cell to pack levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1