{"title":"A型海鞘肠腔胰腺相关消化酶基因的多区域表达","authors":"Rin Iguchi, Kanae Usui, Satoshi Nakayama, Yasunori Sasakura, Toshio Sekiguchi, Michio Ogasawara","doi":"10.1007/s00441-023-03839-6","DOIUrl":null,"url":null,"abstract":"<p><p>Bilateria share sequential steps in their digestive systems, and digestion occurs in a pre-absorption step within a chamber-like structure. Previous studies on the ascidian Ciona intestinalis type A, an evolutionary research model of vertebrate organs, revealed that Ciona homologs of pancreas-related exocrine digestive enzymes (XDEs) are exclusively expressed in the chamber-like bulging stomach. In the development of the gastrointestinal tract, genes for the pancreas-related transcription factors, namely Ptf1a, Nr5a2, and Pdx, are expressed near the stomach. Recent organ/tissue RNA-seq studies on two Ciona species reported that transcripts of the XDE homologs exist in the intestinal regions, as well as in the stomach. In the present study, we investigated the spatial gene expression of XDE homologs in the gastrointestinal region of the C. intestinalis type A. Whole-mount in situ hybridization using adult and juvenile specimens revealed apparent expression signals of XDE homologs in a small number of gastrointestinal epithelial cells. Furthermore, two pancreas-related transcription factor genes, Nr5a2 and Pdx, exhibited multi-regional expression along the Ciona juvenile intestines. These results imply that ascidians may form multiple digestive regions corresponding to the vertebrate pancreas.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"423-430"},"PeriodicalIF":3.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-regional expression of pancreas-related digestive enzyme genes in the intestinal chamber of the ascidian Ciona intestinalis type A.\",\"authors\":\"Rin Iguchi, Kanae Usui, Satoshi Nakayama, Yasunori Sasakura, Toshio Sekiguchi, Michio Ogasawara\",\"doi\":\"10.1007/s00441-023-03839-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bilateria share sequential steps in their digestive systems, and digestion occurs in a pre-absorption step within a chamber-like structure. Previous studies on the ascidian Ciona intestinalis type A, an evolutionary research model of vertebrate organs, revealed that Ciona homologs of pancreas-related exocrine digestive enzymes (XDEs) are exclusively expressed in the chamber-like bulging stomach. In the development of the gastrointestinal tract, genes for the pancreas-related transcription factors, namely Ptf1a, Nr5a2, and Pdx, are expressed near the stomach. Recent organ/tissue RNA-seq studies on two Ciona species reported that transcripts of the XDE homologs exist in the intestinal regions, as well as in the stomach. In the present study, we investigated the spatial gene expression of XDE homologs in the gastrointestinal region of the C. intestinalis type A. Whole-mount in situ hybridization using adult and juvenile specimens revealed apparent expression signals of XDE homologs in a small number of gastrointestinal epithelial cells. Furthermore, two pancreas-related transcription factor genes, Nr5a2 and Pdx, exhibited multi-regional expression along the Ciona juvenile intestines. These results imply that ascidians may form multiple digestive regions corresponding to the vertebrate pancreas.</p>\",\"PeriodicalId\":9712,\"journal\":{\"name\":\"Cell and Tissue Research\",\"volume\":\" \",\"pages\":\"423-430\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00441-023-03839-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-023-03839-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Multi-regional expression of pancreas-related digestive enzyme genes in the intestinal chamber of the ascidian Ciona intestinalis type A.
Bilateria share sequential steps in their digestive systems, and digestion occurs in a pre-absorption step within a chamber-like structure. Previous studies on the ascidian Ciona intestinalis type A, an evolutionary research model of vertebrate organs, revealed that Ciona homologs of pancreas-related exocrine digestive enzymes (XDEs) are exclusively expressed in the chamber-like bulging stomach. In the development of the gastrointestinal tract, genes for the pancreas-related transcription factors, namely Ptf1a, Nr5a2, and Pdx, are expressed near the stomach. Recent organ/tissue RNA-seq studies on two Ciona species reported that transcripts of the XDE homologs exist in the intestinal regions, as well as in the stomach. In the present study, we investigated the spatial gene expression of XDE homologs in the gastrointestinal region of the C. intestinalis type A. Whole-mount in situ hybridization using adult and juvenile specimens revealed apparent expression signals of XDE homologs in a small number of gastrointestinal epithelial cells. Furthermore, two pancreas-related transcription factor genes, Nr5a2 and Pdx, exhibited multi-regional expression along the Ciona juvenile intestines. These results imply that ascidians may form multiple digestive regions corresponding to the vertebrate pancreas.
期刊介绍:
The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include:
- neurobiology
- neuroendocrinology
- endocrinology
- reproductive biology
- skeletal and immune systems
- development
- stem cells
- muscle biology.