{"title":"Nrf2-ARE信号通路及烟叶提取物对匹罗卡品致痫大鼠急性期的调节作用","authors":"Guanghui Jin, Zhuo Wang, Wei Zhou, Guyue Li","doi":"10.1007/s12033-023-00911-y","DOIUrl":null,"url":null,"abstract":"<p><p>To analyze the role of Nrf2-ARE signaling pathway in the regulation of the acute phase of pilocarpine-induced epilepsy in juvenile rats by Tatarinow Sweetflag Extract (TSE). One hundred and twenty SPF-grade Wistar male rats were were divided into five groups by random number table method, namely, normal group, model group, low-dose TSE group, high-dose TSE group, low-dose TSE + Nrf2 inhibitor Brusatol group (low-dose TSE + BRU group), and high-dose TSE + Nrf2 inhibitor Brusatol group (high-dose TSE + BRU group), with 20 rats in each group. The success rate of modelling in the model group, low-dose TSE group, high-dose TSE group, low-dose TSE + BRU group, high-dose TSE + BRU group were 60.00% (12/20), 65.00% (13/20), 65.00% (13/20), 70.00% (14/20), and 70.00% (14/20), respectively, showing no significant difference (P > 0.05). The latency and incidence of class IV and V, discharge amplitude as well as frequency of rats in the low- and high-dose TSE groups were lower than those in the model group (P < 0.05); the lipid peroxide and malondialdehyde concentrations in hippocampal tissues in the low- and high-dose TSE groups were lower than those in the model group (P < 0.05); The Nrf2, NQO-1 and HO- 1 protein and mRNA expression levels were increased in the low- and high-dose TSE groups compared with the model group (P < 0.05). The therapeutic effect of TSE in rats with acute epilepsy was satisfactory, and its mechanism of action may be related to activation of Nrf2-ARE signaling pathway to reduce the degree of oxidative stress.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2946-2955"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Nrf2-ARE Signaling Pathway and Tatarinow Sweetflag Extract to Regulate the Acute Phase of Pilocarpine-Induced Epilepsy in Juvenile Rats.\",\"authors\":\"Guanghui Jin, Zhuo Wang, Wei Zhou, Guyue Li\",\"doi\":\"10.1007/s12033-023-00911-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To analyze the role of Nrf2-ARE signaling pathway in the regulation of the acute phase of pilocarpine-induced epilepsy in juvenile rats by Tatarinow Sweetflag Extract (TSE). One hundred and twenty SPF-grade Wistar male rats were were divided into five groups by random number table method, namely, normal group, model group, low-dose TSE group, high-dose TSE group, low-dose TSE + Nrf2 inhibitor Brusatol group (low-dose TSE + BRU group), and high-dose TSE + Nrf2 inhibitor Brusatol group (high-dose TSE + BRU group), with 20 rats in each group. The success rate of modelling in the model group, low-dose TSE group, high-dose TSE group, low-dose TSE + BRU group, high-dose TSE + BRU group were 60.00% (12/20), 65.00% (13/20), 65.00% (13/20), 70.00% (14/20), and 70.00% (14/20), respectively, showing no significant difference (P > 0.05). The latency and incidence of class IV and V, discharge amplitude as well as frequency of rats in the low- and high-dose TSE groups were lower than those in the model group (P < 0.05); the lipid peroxide and malondialdehyde concentrations in hippocampal tissues in the low- and high-dose TSE groups were lower than those in the model group (P < 0.05); The Nrf2, NQO-1 and HO- 1 protein and mRNA expression levels were increased in the low- and high-dose TSE groups compared with the model group (P < 0.05). The therapeutic effect of TSE in rats with acute epilepsy was satisfactory, and its mechanism of action may be related to activation of Nrf2-ARE signaling pathway to reduce the degree of oxidative stress.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"2946-2955\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-023-00911-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-023-00911-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Role of Nrf2-ARE Signaling Pathway and Tatarinow Sweetflag Extract to Regulate the Acute Phase of Pilocarpine-Induced Epilepsy in Juvenile Rats.
To analyze the role of Nrf2-ARE signaling pathway in the regulation of the acute phase of pilocarpine-induced epilepsy in juvenile rats by Tatarinow Sweetflag Extract (TSE). One hundred and twenty SPF-grade Wistar male rats were were divided into five groups by random number table method, namely, normal group, model group, low-dose TSE group, high-dose TSE group, low-dose TSE + Nrf2 inhibitor Brusatol group (low-dose TSE + BRU group), and high-dose TSE + Nrf2 inhibitor Brusatol group (high-dose TSE + BRU group), with 20 rats in each group. The success rate of modelling in the model group, low-dose TSE group, high-dose TSE group, low-dose TSE + BRU group, high-dose TSE + BRU group were 60.00% (12/20), 65.00% (13/20), 65.00% (13/20), 70.00% (14/20), and 70.00% (14/20), respectively, showing no significant difference (P > 0.05). The latency and incidence of class IV and V, discharge amplitude as well as frequency of rats in the low- and high-dose TSE groups were lower than those in the model group (P < 0.05); the lipid peroxide and malondialdehyde concentrations in hippocampal tissues in the low- and high-dose TSE groups were lower than those in the model group (P < 0.05); The Nrf2, NQO-1 and HO- 1 protein and mRNA expression levels were increased in the low- and high-dose TSE groups compared with the model group (P < 0.05). The therapeutic effect of TSE in rats with acute epilepsy was satisfactory, and its mechanism of action may be related to activation of Nrf2-ARE signaling pathway to reduce the degree of oxidative stress.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.