Moon-Hyung Jang, Yu Lei, Ryan T. Conners and Gang Wang
{"title":"使用透明胶带的自供电摩擦电可穿戴生物传感器。","authors":"Moon-Hyung Jang, Yu Lei, Ryan T. Conners and Gang Wang","doi":"10.1039/D3TB01481A","DOIUrl":null,"url":null,"abstract":"<p >A novel self-powered wearable triboelectric biosensor concept is proposed in this paper, which consists of Scotch tape and a metalized polyester sheet (Al/PET). The Scotch tape is the sensing element by exploring the interaction between the tape polypropylene backing material and the acrylic adhesive layer when pressing and releasing. The polypropylene surface only has partial positive charges because of a nonpolar surface, while the acrylic adhesive has a polar surface with positively and negatively charged and neutral regions. Atomic size gaps are formed because of the attractive and repulsive areas at the interface due to van der Waals forces. These density depleted regions act as ‘geometric’ gaps to produce triboelectric charges <em>via</em> contact and separation on a microscopic scale. This leads to our wearable biosensor design for measuring human body motion. Associated skin contraction and relaxation during body motion will activate the contact and separation between the polypropylene and acrylic adhesive layer when the sensor assembly is adhered to the skin. Various demonstrations were conducted to detect different body motions, including elbow flexion at a low angle, forearm protonation, forearm supination, knee flexion/extension, proximal interphalangeal flexion/extension, temple motion due to eye blinking, and temporomandibular opening. Unique features can be identified which are associated with different body motions. Moreover, the measurements from our triboelectric sensor correlate well with the results from a commercial electromyography (EMG) sensor in an isokinetic leg extension test, which leads to a new method of measuring human muscle activation.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 44","pages":" 10640-10650"},"PeriodicalIF":6.1000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-powered triboelectric wearable biosensor using Scotch tape†\",\"authors\":\"Moon-Hyung Jang, Yu Lei, Ryan T. Conners and Gang Wang\",\"doi\":\"10.1039/D3TB01481A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A novel self-powered wearable triboelectric biosensor concept is proposed in this paper, which consists of Scotch tape and a metalized polyester sheet (Al/PET). The Scotch tape is the sensing element by exploring the interaction between the tape polypropylene backing material and the acrylic adhesive layer when pressing and releasing. The polypropylene surface only has partial positive charges because of a nonpolar surface, while the acrylic adhesive has a polar surface with positively and negatively charged and neutral regions. Atomic size gaps are formed because of the attractive and repulsive areas at the interface due to van der Waals forces. These density depleted regions act as ‘geometric’ gaps to produce triboelectric charges <em>via</em> contact and separation on a microscopic scale. This leads to our wearable biosensor design for measuring human body motion. Associated skin contraction and relaxation during body motion will activate the contact and separation between the polypropylene and acrylic adhesive layer when the sensor assembly is adhered to the skin. Various demonstrations were conducted to detect different body motions, including elbow flexion at a low angle, forearm protonation, forearm supination, knee flexion/extension, proximal interphalangeal flexion/extension, temple motion due to eye blinking, and temporomandibular opening. Unique features can be identified which are associated with different body motions. Moreover, the measurements from our triboelectric sensor correlate well with the results from a commercial electromyography (EMG) sensor in an isokinetic leg extension test, which leads to a new method of measuring human muscle activation.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 44\",\"pages\":\" 10640-10650\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/tb/d3tb01481a\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/tb/d3tb01481a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Self-powered triboelectric wearable biosensor using Scotch tape†
A novel self-powered wearable triboelectric biosensor concept is proposed in this paper, which consists of Scotch tape and a metalized polyester sheet (Al/PET). The Scotch tape is the sensing element by exploring the interaction between the tape polypropylene backing material and the acrylic adhesive layer when pressing and releasing. The polypropylene surface only has partial positive charges because of a nonpolar surface, while the acrylic adhesive has a polar surface with positively and negatively charged and neutral regions. Atomic size gaps are formed because of the attractive and repulsive areas at the interface due to van der Waals forces. These density depleted regions act as ‘geometric’ gaps to produce triboelectric charges via contact and separation on a microscopic scale. This leads to our wearable biosensor design for measuring human body motion. Associated skin contraction and relaxation during body motion will activate the contact and separation between the polypropylene and acrylic adhesive layer when the sensor assembly is adhered to the skin. Various demonstrations were conducted to detect different body motions, including elbow flexion at a low angle, forearm protonation, forearm supination, knee flexion/extension, proximal interphalangeal flexion/extension, temple motion due to eye blinking, and temporomandibular opening. Unique features can be identified which are associated with different body motions. Moreover, the measurements from our triboelectric sensor correlate well with the results from a commercial electromyography (EMG) sensor in an isokinetic leg extension test, which leads to a new method of measuring human muscle activation.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices