{"title":"纤锌矿锌硫族化物的可剥离和自修复二维材料作为纳米器件的构建块。","authors":"Jin Li, Xinbo Chen, Maoyun Di and Lei Qin","doi":"10.1039/D3CP03929C","DOIUrl":null,"url":null,"abstract":"<p >With the advent of graphene, two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. The most anticipated 2D materials have been synthesized and exploited for novel applications. Multilayered zinc chalcogenides (ZnX) are the best precursors for obtaining atomic layer two-dimensional materials by exfoliation. Therefore, we carry out a detailed density functional theory-based study to achieve an exfoliation process of ZnX non-van der Waals sheets by straining and provide a microscopic understanding of the ferroelectric, optic, and spin behaviors of ZnX systems and the corresponding self-healable two-dimensional ZnX devices. The results revealed that 2D ZnX sheets can be obtained when strain is 14% for ZnS and ZnSe, and the peak values of exfoliation energy have a similar order of magnitude to those of traditional 2D materials, indicating the possibility of obtaining 2D ZnX monolayers. For intrinsic 2D ferroelectric materials with in-plane electric polarization, the direction of ZnX sheets can be reversed using an electric field with an energy barrier of ∼0.175 eV per atom for ZnSe, offering a promising functional basis for their application in ferroelectric nanodevices. The first absorption of photons for polarization perpendicular to the monolayer plane occurs in a high energy range of photons, facilitating their application in LEDs. The spin splitting in non-centrosymmetric ZnX crystals exhibits a Rashba spin-texture according to first-principles calculations. The self-healable two-dimensional nanodevices have a smooth curve from −0.5 to 0.5 eV. This work indicates the potential value of non-van der Waals ZnX 2D materials for their application in photoelectric and spintronic nanodevices.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 43","pages":" 29690-29697"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exfoliable and self-healable two-dimensional materials from wurtzite zinc chalcogenides as building blocks of nanodevices†\",\"authors\":\"Jin Li, Xinbo Chen, Maoyun Di and Lei Qin\",\"doi\":\"10.1039/D3CP03929C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >With the advent of graphene, two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. The most anticipated 2D materials have been synthesized and exploited for novel applications. Multilayered zinc chalcogenides (ZnX) are the best precursors for obtaining atomic layer two-dimensional materials by exfoliation. Therefore, we carry out a detailed density functional theory-based study to achieve an exfoliation process of ZnX non-van der Waals sheets by straining and provide a microscopic understanding of the ferroelectric, optic, and spin behaviors of ZnX systems and the corresponding self-healable two-dimensional ZnX devices. The results revealed that 2D ZnX sheets can be obtained when strain is 14% for ZnS and ZnSe, and the peak values of exfoliation energy have a similar order of magnitude to those of traditional 2D materials, indicating the possibility of obtaining 2D ZnX monolayers. For intrinsic 2D ferroelectric materials with in-plane electric polarization, the direction of ZnX sheets can be reversed using an electric field with an energy barrier of ∼0.175 eV per atom for ZnSe, offering a promising functional basis for their application in ferroelectric nanodevices. The first absorption of photons for polarization perpendicular to the monolayer plane occurs in a high energy range of photons, facilitating their application in LEDs. The spin splitting in non-centrosymmetric ZnX crystals exhibits a Rashba spin-texture according to first-principles calculations. The self-healable two-dimensional nanodevices have a smooth curve from −0.5 to 0.5 eV. This work indicates the potential value of non-van der Waals ZnX 2D materials for their application in photoelectric and spintronic nanodevices.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 43\",\"pages\":\" 29690-29697\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03929c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03929c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Exfoliable and self-healable two-dimensional materials from wurtzite zinc chalcogenides as building blocks of nanodevices†
With the advent of graphene, two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. The most anticipated 2D materials have been synthesized and exploited for novel applications. Multilayered zinc chalcogenides (ZnX) are the best precursors for obtaining atomic layer two-dimensional materials by exfoliation. Therefore, we carry out a detailed density functional theory-based study to achieve an exfoliation process of ZnX non-van der Waals sheets by straining and provide a microscopic understanding of the ferroelectric, optic, and spin behaviors of ZnX systems and the corresponding self-healable two-dimensional ZnX devices. The results revealed that 2D ZnX sheets can be obtained when strain is 14% for ZnS and ZnSe, and the peak values of exfoliation energy have a similar order of magnitude to those of traditional 2D materials, indicating the possibility of obtaining 2D ZnX monolayers. For intrinsic 2D ferroelectric materials with in-plane electric polarization, the direction of ZnX sheets can be reversed using an electric field with an energy barrier of ∼0.175 eV per atom for ZnSe, offering a promising functional basis for their application in ferroelectric nanodevices. The first absorption of photons for polarization perpendicular to the monolayer plane occurs in a high energy range of photons, facilitating their application in LEDs. The spin splitting in non-centrosymmetric ZnX crystals exhibits a Rashba spin-texture according to first-principles calculations. The self-healable two-dimensional nanodevices have a smooth curve from −0.5 to 0.5 eV. This work indicates the potential value of non-van der Waals ZnX 2D materials for their application in photoelectric and spintronic nanodevices.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.