{"title":"氢+水+癸烷混合物在三相平衡中界面性质的分子模型。","authors":"Yafan Yang, Jingyu Wan, Jingfa Li, Guangsi Zhao and Xiangyu Shang","doi":"10.1039/D3CP04406H","DOIUrl":null,"url":null,"abstract":"<p >The understanding of interfacial phenomena between H<small><sub>2</sub></small> and geofluids is of great importance for underground H<small><sub>2</sub></small> storage, but requires further study. We report the first investigation on the three-phase fluid mixture containing H<small><sub>2</sub></small>, H<small><sub>2</sub></small>O, and <em>n</em>-C<small><sub>10</sub></small>H<small><sub>22</sub></small>. Molecular dynamics simulation and PC-SAFT density gradient theory are employed to estimate the interfacial properties under various conditions (temperature ranges from 298 to 373 K and pressure is up to around 100 MPa). Our results demonstrate that interfacial tensions (IFTs) of the H<small><sub>2</sub></small>–H<small><sub>2</sub></small>O interface in the H<small><sub>2</sub></small> + H<small><sub>2</sub></small>O + C<small><sub>10</sub></small>H<small><sub>22</sub></small> three-phase mixture are smaller than IFTs in the H<small><sub>2</sub></small> + H<small><sub>2</sub></small>O two-phase mixture. This decrement of IFT can be attributed to C<small><sub>10</sub></small>H<small><sub>22</sub></small> adsorption in the interface. Importantly, H<small><sub>2</sub></small> accumulates in the H<small><sub>2</sub></small>O–C<small><sub>10</sub></small>H<small><sub>22</sub></small> interface in the three-phase systems, which leads to weaker increments of IFT with increasing pressure compared to IFTs in the water + C<small><sub>10</sub></small>H<small><sub>22</sub></small> two-phase mixture. In addition, the IFTs of the H<small><sub>2</sub></small>–C<small><sub>10</sub></small>H<small><sub>22</sub></small> interface are hardly influenced by H<small><sub>2</sub></small>O due to the limited amount of H<small><sub>2</sub></small>O dissolved in nonaqueous phases. Nevertheless, positive surface excesses of H<small><sub>2</sub></small>O are seen in the H<small><sub>2</sub></small>–C<small><sub>10</sub></small>H<small><sub>22</sub></small> interfacial region. Furthermore, the values of the spreading coefficient are mostly negative revealing the presence of the three-phase contact for the H<small><sub>2</sub></small> + H<small><sub>2</sub></small>O + C<small><sub>10</sub></small>H<small><sub>22</sub></small> mixture under studied conditions.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 43","pages":" 29641-29655"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular modeling of interfacial properties of the hydrogen + water + decane mixture in three-phase equilibrium†\",\"authors\":\"Yafan Yang, Jingyu Wan, Jingfa Li, Guangsi Zhao and Xiangyu Shang\",\"doi\":\"10.1039/D3CP04406H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The understanding of interfacial phenomena between H<small><sub>2</sub></small> and geofluids is of great importance for underground H<small><sub>2</sub></small> storage, but requires further study. We report the first investigation on the three-phase fluid mixture containing H<small><sub>2</sub></small>, H<small><sub>2</sub></small>O, and <em>n</em>-C<small><sub>10</sub></small>H<small><sub>22</sub></small>. Molecular dynamics simulation and PC-SAFT density gradient theory are employed to estimate the interfacial properties under various conditions (temperature ranges from 298 to 373 K and pressure is up to around 100 MPa). Our results demonstrate that interfacial tensions (IFTs) of the H<small><sub>2</sub></small>–H<small><sub>2</sub></small>O interface in the H<small><sub>2</sub></small> + H<small><sub>2</sub></small>O + C<small><sub>10</sub></small>H<small><sub>22</sub></small> three-phase mixture are smaller than IFTs in the H<small><sub>2</sub></small> + H<small><sub>2</sub></small>O two-phase mixture. This decrement of IFT can be attributed to C<small><sub>10</sub></small>H<small><sub>22</sub></small> adsorption in the interface. Importantly, H<small><sub>2</sub></small> accumulates in the H<small><sub>2</sub></small>O–C<small><sub>10</sub></small>H<small><sub>22</sub></small> interface in the three-phase systems, which leads to weaker increments of IFT with increasing pressure compared to IFTs in the water + C<small><sub>10</sub></small>H<small><sub>22</sub></small> two-phase mixture. In addition, the IFTs of the H<small><sub>2</sub></small>–C<small><sub>10</sub></small>H<small><sub>22</sub></small> interface are hardly influenced by H<small><sub>2</sub></small>O due to the limited amount of H<small><sub>2</sub></small>O dissolved in nonaqueous phases. Nevertheless, positive surface excesses of H<small><sub>2</sub></small>O are seen in the H<small><sub>2</sub></small>–C<small><sub>10</sub></small>H<small><sub>22</sub></small> interfacial region. Furthermore, the values of the spreading coefficient are mostly negative revealing the presence of the three-phase contact for the H<small><sub>2</sub></small> + H<small><sub>2</sub></small>O + C<small><sub>10</sub></small>H<small><sub>22</sub></small> mixture under studied conditions.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 43\",\"pages\":\" 29641-29655\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp04406h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp04406h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Molecular modeling of interfacial properties of the hydrogen + water + decane mixture in three-phase equilibrium†
The understanding of interfacial phenomena between H2 and geofluids is of great importance for underground H2 storage, but requires further study. We report the first investigation on the three-phase fluid mixture containing H2, H2O, and n-C10H22. Molecular dynamics simulation and PC-SAFT density gradient theory are employed to estimate the interfacial properties under various conditions (temperature ranges from 298 to 373 K and pressure is up to around 100 MPa). Our results demonstrate that interfacial tensions (IFTs) of the H2–H2O interface in the H2 + H2O + C10H22 three-phase mixture are smaller than IFTs in the H2 + H2O two-phase mixture. This decrement of IFT can be attributed to C10H22 adsorption in the interface. Importantly, H2 accumulates in the H2O–C10H22 interface in the three-phase systems, which leads to weaker increments of IFT with increasing pressure compared to IFTs in the water + C10H22 two-phase mixture. In addition, the IFTs of the H2–C10H22 interface are hardly influenced by H2O due to the limited amount of H2O dissolved in nonaqueous phases. Nevertheless, positive surface excesses of H2O are seen in the H2–C10H22 interfacial region. Furthermore, the values of the spreading coefficient are mostly negative revealing the presence of the three-phase contact for the H2 + H2O + C10H22 mixture under studied conditions.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.