{"title":"利用下一代测序技术开发宽叶Fagus pashanica(壳斗科)的多态性微卫星标记。","authors":"Bi-Ru Zhu, Xiao-Ya Zhang, Xiao-Xi Yang, Wan-Jin Liao","doi":"10.1266/ggs.23-00160","DOIUrl":null,"url":null,"abstract":"<p><p>Fagus pashanica is an endangered and endemic tree species in China. To understand its genetic diversity and structure for effective conservation, we used next-generation sequencing data to develop a set of microsatellite markers. Twenty-three of the 68 designed loci were successfully amplified. Fifteen polymorphic loci with clear peaks were selected for further analyses in three F. pashanica populations sampled from Nanjiang, Wangcang and Pingwu counties in Sichuan Province, China. The number of alleles per locus ranged from two to 11. The levels of observed and expected heterozygosity ranged from 0.033-0.852 and 0.033-0.787, respectively. All 23 loci were also successfully amplified in F. longipetiolata and F. lucida, and 19 were successfully amplified in F. engleriana. These microsatellite markers will be useful for population genetic studies of F. pashanica and other Fagus species.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":" ","pages":"277-281"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of polymorphic microsatellite markers for Fagus pashanica (Fagaceae) using next-generation sequencing.\",\"authors\":\"Bi-Ru Zhu, Xiao-Ya Zhang, Xiao-Xi Yang, Wan-Jin Liao\",\"doi\":\"10.1266/ggs.23-00160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fagus pashanica is an endangered and endemic tree species in China. To understand its genetic diversity and structure for effective conservation, we used next-generation sequencing data to develop a set of microsatellite markers. Twenty-three of the 68 designed loci were successfully amplified. Fifteen polymorphic loci with clear peaks were selected for further analyses in three F. pashanica populations sampled from Nanjiang, Wangcang and Pingwu counties in Sichuan Province, China. The number of alleles per locus ranged from two to 11. The levels of observed and expected heterozygosity ranged from 0.033-0.852 and 0.033-0.787, respectively. All 23 loci were also successfully amplified in F. longipetiolata and F. lucida, and 19 were successfully amplified in F. engleriana. These microsatellite markers will be useful for population genetic studies of F. pashanica and other Fagus species.</p>\",\"PeriodicalId\":12690,\"journal\":{\"name\":\"Genes & genetic systems\",\"volume\":\" \",\"pages\":\"277-281\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genetic systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1266/ggs.23-00160\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genetic systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1266/ggs.23-00160","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Development of polymorphic microsatellite markers for Fagus pashanica (Fagaceae) using next-generation sequencing.
Fagus pashanica is an endangered and endemic tree species in China. To understand its genetic diversity and structure for effective conservation, we used next-generation sequencing data to develop a set of microsatellite markers. Twenty-three of the 68 designed loci were successfully amplified. Fifteen polymorphic loci with clear peaks were selected for further analyses in three F. pashanica populations sampled from Nanjiang, Wangcang and Pingwu counties in Sichuan Province, China. The number of alleles per locus ranged from two to 11. The levels of observed and expected heterozygosity ranged from 0.033-0.852 and 0.033-0.787, respectively. All 23 loci were also successfully amplified in F. longipetiolata and F. lucida, and 19 were successfully amplified in F. engleriana. These microsatellite markers will be useful for population genetic studies of F. pashanica and other Fagus species.