人工智能在心理放射学中的应用。

Psychoradiology Pub Date : 2021-07-02 eCollection Date: 2021-06-01 DOI:10.1093/psyrad/kkab009
Fei Li, Huaiqiang Sun, Bharat B Biswal, John A Sweeney, Qiyong Gong
{"title":"人工智能在心理放射学中的应用。","authors":"Fei Li, Huaiqiang Sun, Bharat B Biswal, John A Sweeney, Qiyong Gong","doi":"10.1093/psyrad/kkab009","DOIUrl":null,"url":null,"abstract":"<p><p>One important challenge in psychiatric research is to translate findings from brain imaging research studies that identified brain alterations in patient groups into an accurate diagnosis at an early stage of illness, prediction of prognosis before treatment, and guidance for selection of effective treatments that target patient-relevant pathophysiological features. This is the primary aim of the field of Psychoradiology. Using databases collected from large samples at multiple centers, sophisticated artificial intelligence (AI) algorithms may be used to develop clinically useful image analysis pipelines that can help physicians diagnose, predict, and make treatment decisions. In this review, we selectively summarize psychoradiological research using magnetic resonance imaging of the brain to explore the neural mechanism of psychiatric disorders, and outline progress and the path forward for the combination of psychoradiology and AI for complementing clinical examinations in patients with psychiatric disorders, as well as limitations in the application of AI that should be considered in future translational research.</p>","PeriodicalId":93496,"journal":{"name":"Psychoradiology","volume":"1 2","pages":"94-107"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594695/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence applications in psychoradiology.\",\"authors\":\"Fei Li, Huaiqiang Sun, Bharat B Biswal, John A Sweeney, Qiyong Gong\",\"doi\":\"10.1093/psyrad/kkab009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One important challenge in psychiatric research is to translate findings from brain imaging research studies that identified brain alterations in patient groups into an accurate diagnosis at an early stage of illness, prediction of prognosis before treatment, and guidance for selection of effective treatments that target patient-relevant pathophysiological features. This is the primary aim of the field of Psychoradiology. Using databases collected from large samples at multiple centers, sophisticated artificial intelligence (AI) algorithms may be used to develop clinically useful image analysis pipelines that can help physicians diagnose, predict, and make treatment decisions. In this review, we selectively summarize psychoradiological research using magnetic resonance imaging of the brain to explore the neural mechanism of psychiatric disorders, and outline progress and the path forward for the combination of psychoradiology and AI for complementing clinical examinations in patients with psychiatric disorders, as well as limitations in the application of AI that should be considered in future translational research.</p>\",\"PeriodicalId\":93496,\"journal\":{\"name\":\"Psychoradiology\",\"volume\":\"1 2\",\"pages\":\"94-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594695/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychoradiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/psyrad/kkab009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychoradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/psyrad/kkab009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精神病学研究中的一个重要挑战是将脑成像研究的发现转化为疾病早期的准确诊断、治疗前的预后预测,以及针对患者相关病理生理特征选择有效治疗的指导。这是心理放射学领域的主要目标。利用从多个中心的大样本中收集的数据库,复杂的人工智能(AI)算法可以用于开发临床有用的图像分析管道,帮助医生诊断、预测和做出治疗决策。在这篇综述中,我们选择性地总结了使用大脑磁共振成像来探索精神障碍的神经机制的心理放射学研究,并概述了心理放射学和人工智能相结合以补充精神障碍患者临床检查的进展和前进道路,以及未来转化研究中应考虑的人工智能应用的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence applications in psychoradiology.

One important challenge in psychiatric research is to translate findings from brain imaging research studies that identified brain alterations in patient groups into an accurate diagnosis at an early stage of illness, prediction of prognosis before treatment, and guidance for selection of effective treatments that target patient-relevant pathophysiological features. This is the primary aim of the field of Psychoradiology. Using databases collected from large samples at multiple centers, sophisticated artificial intelligence (AI) algorithms may be used to develop clinically useful image analysis pipelines that can help physicians diagnose, predict, and make treatment decisions. In this review, we selectively summarize psychoradiological research using magnetic resonance imaging of the brain to explore the neural mechanism of psychiatric disorders, and outline progress and the path forward for the combination of psychoradiology and AI for complementing clinical examinations in patients with psychiatric disorders, as well as limitations in the application of AI that should be considered in future translational research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
期刊最新文献
Utilizing typical developmental trajectories to reflect brain abnormalities in autism spectrum disorder. Functional connectivity analyses of individual hippocampal subregions in major depressive disorder with electroconvulsive therapy. A decade of white matter connectivity studies in developmental dyslexia. Development of the brain network control theory and its implications. Exploring methodological frontiers in laminar fMRI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1