在给定固定预算的动态纵向模型中寻找最优的最大功率人数(N)和时间点(T)

IF 2.5 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Structural Equation Modeling: A Multidisciplinary Journal Pub Date : 2023-08-22 DOI:10.1080/10705511.2023.2230520
Martin Hecht, Julia-Kim Walther, Manuel Arnold, Steffen Zitzmann
{"title":"在给定固定预算的动态纵向模型中寻找最优的最大功率人数(N)和时间点(T)","authors":"Martin Hecht, Julia-Kim Walther, Manuel Arnold, Steffen Zitzmann","doi":"10.1080/10705511.2023.2230520","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b></p><p>Planning longitudinal studies can be challenging as various design decisions need to be made. Often, researchers are in search for the optimal design that maximizes statistical power to test certain parameters of the employed model. We provide a user-friendly Shiny app OptDynMo available at https://shiny.psychologie.hu-berlin.de/optdynmo that helps to find the optimal number of persons (<i>N</i>) and the optimal number of time points (<i>T</i>) for which the power of the likelihood ratio test (LRT) for a model parameter is maximal given a fixed budget for conducting the study. The total cost of the study is computed from two components: the cost to include one person in the study and the cost for measuring one person at one time point. Currently supported models are the cross-lagged panel model (CLPM), factor CLPM, random intercepts cross-lagged panel model (RI-CLPM), stable trait autoregressive trait and state model (STARTS), latent curve model with structured residuals (LCM-SR), autoregressive latent trajectory model (ALT), and the latent change score model (LCS).</p>","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"17 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finding the Optimal Number of Persons (N) and Time Points (T) for Maximal Power in Dynamic Longitudinal Models Given a Fixed Budget\",\"authors\":\"Martin Hecht, Julia-Kim Walther, Manuel Arnold, Steffen Zitzmann\",\"doi\":\"10.1080/10705511.2023.2230520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b></p><p>Planning longitudinal studies can be challenging as various design decisions need to be made. Often, researchers are in search for the optimal design that maximizes statistical power to test certain parameters of the employed model. We provide a user-friendly Shiny app OptDynMo available at https://shiny.psychologie.hu-berlin.de/optdynmo that helps to find the optimal number of persons (<i>N</i>) and the optimal number of time points (<i>T</i>) for which the power of the likelihood ratio test (LRT) for a model parameter is maximal given a fixed budget for conducting the study. The total cost of the study is computed from two components: the cost to include one person in the study and the cost for measuring one person at one time point. Currently supported models are the cross-lagged panel model (CLPM), factor CLPM, random intercepts cross-lagged panel model (RI-CLPM), stable trait autoregressive trait and state model (STARTS), latent curve model with structured residuals (LCM-SR), autoregressive latent trajectory model (ALT), and the latent change score model (LCS).</p>\",\"PeriodicalId\":21964,\"journal\":{\"name\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Equation Modeling: A Multidisciplinary Journal\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/10705511.2023.2230520\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Equation Modeling: A Multidisciplinary Journal","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10705511.2023.2230520","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

规划纵向研究是具有挑战性的,因为需要做出各种设计决策。通常,研究人员都在寻找最优的设计,最大限度地提高统计能力,以测试所采用的模型的某些参数。我们提供了一个用户友好的Shiny应用程序OptDynMo,可在https://shiny.psychologie.hu-berlin.de/optdynmo上找到最优人数(N)和最优时间点(T),在给定进行研究的固定预算的情况下,模型参数的似然比检验(LRT)的功率最大。研究的总成本由两个组成部分计算:将一个人纳入研究的成本和在一个时间点测量一个人的成本。目前支持的模型有交叉滞后面板模型(CLPM)、因子交叉滞后面板模型(CLPM)、随机截距交叉滞后面板模型(RI-CLPM)、稳定特质自回归特质状态模型(STARTS)、结构残差潜曲线模型(LCM-SR)、自回归潜轨迹模型(ALT)和潜在变化评分模型(LCS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finding the Optimal Number of Persons (N) and Time Points (T) for Maximal Power in Dynamic Longitudinal Models Given a Fixed Budget

Abstract

Planning longitudinal studies can be challenging as various design decisions need to be made. Often, researchers are in search for the optimal design that maximizes statistical power to test certain parameters of the employed model. We provide a user-friendly Shiny app OptDynMo available at https://shiny.psychologie.hu-berlin.de/optdynmo that helps to find the optimal number of persons (N) and the optimal number of time points (T) for which the power of the likelihood ratio test (LRT) for a model parameter is maximal given a fixed budget for conducting the study. The total cost of the study is computed from two components: the cost to include one person in the study and the cost for measuring one person at one time point. Currently supported models are the cross-lagged panel model (CLPM), factor CLPM, random intercepts cross-lagged panel model (RI-CLPM), stable trait autoregressive trait and state model (STARTS), latent curve model with structured residuals (LCM-SR), autoregressive latent trajectory model (ALT), and the latent change score model (LCS).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
11.70%
发文量
71
审稿时长
>12 weeks
期刊介绍: Structural Equation Modeling: A Multidisciplinary Journal publishes refereed scholarly work from all academic disciplines interested in structural equation modeling. These disciplines include, but are not limited to, psychology, medicine, sociology, education, political science, economics, management, and business/marketing. Theoretical articles address new developments; applied articles deal with innovative structural equation modeling applications; the Teacher’s Corner provides instructional modules on aspects of structural equation modeling; book and software reviews examine new modeling information and techniques; and advertising alerts readers to new products. Comments on technical or substantive issues addressed in articles or reviews published in the journal are encouraged; comments are reviewed, and authors of the original works are invited to respond.
期刊最新文献
Evaluation of Structural Equation Model Forests Performance to Identify Omitted Influential Covariates Evaluating Local Model Misspecification with Modification Indices in Bayesian Structural Equation Modeling Addressing Missing Data in Latent Class Analysis When Using a Three-Step Estimation Approach The Effect of Measurement Error on Hypothesis Testing in Small Sample Structural Equation Modeling: A Comparison of Various Estimation Approaches Dynamic Structural Equation Modeling with Cycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1